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ABSTRACT 
The U.S. electric power industry has been going through fundamental restructuring 

and realignment since the 1990’s. Many issues and problems have emerged during the 

transition, and both economists and engineers have been looking for the solutions fervently. 

In this dissertation, which consists primarily of three essays, we apply economics theory and 

techniques to the power industry and address two related issues, transmission investment and 

financial transmission rights (FTRs). The first essay takes the decentralized perspective and 

investigates the efficiency attribute of market-based transmission investment under perfect 

competition. We clarify, for the first time, the nature of the externality created by loop flows 

that causes transmission investment to be inefficient. Our findings have important 

implications for better understanding of transmission market design and creating incentives 

for efficient transmission investment.  In the second essay, we define several rules for 

allocating transmission investment cost within the framework of cooperative game theory. 

These rules provide fair, stable or efficient cost allocations in theory and are good 

benchmarks against which the allocation mechanism in practice can be compared and 

improved upon. In the last essay, we make exploratory efforts in analyzing and assessing 

empirically the performance of the Midwest independent system operator (MISO) FTR 

auction market. We reveal some stylized facts about this young market and find that it is not 

efficient under the risk-neutrality assumption. We also point out and correct the drawbacks in 

previous related work and suggest about more complete empirical work in future. In all, this 

dissertation makes both theoretic and empirical analysis of the two hot issues related to the 

power industry and comes up with findings that have important implications for the 

development of this industry.  
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CHAPTER 1.  OVERVIEW 
The contribution of electric power to modern life is unparalleled in the U.S. and 

almost all the other countries in the world. Electricity is pervasive in our society, permeating 

every aspect of the economy and affecting our daily lives both in business and at home. We 

depend on extraordinarily high reliability in electricity services. Interruptions are limited to 

no more than a few hours per year and have far-reaching consequences when they occur.  

This dependence on electricity is starkly evident as we recall the blackout in the 

eastern part of North America in the summer of 2003. The costs are estimated in billions of 

dollars and still have not been fully figured out. This event underscores the extreme 

importance of electricity reliability and the unsubstitutable role that electricity plays in the 

economy and people’s lives. As a response to the electricity failure, public commissions, 

regulatory bodies, and federal and state agencies have undertaken fervent activities to 

identify appropriate actions to prevent such outages in the future.  

Not only are we dependent on electricity, but customers’ expectations of reliability 

have changed. Consumers are demanding very high quality power in their homes for 

electronics and at work for industrial processes. Some industries have indicated that the 

tolerances of their processes require extremely high reliability in electricity supply. Therefore, 

it is of great importance to ensure reliable electricity and transmission services. This is 

highlighted in the context of an unprecedented deregulation of the electric power industry.  

During the past two decades, the way in which electricity is provided to customers 

has changed fundamentally in the U.S. The changes do not speak to the physics of electricity 

or to how it is delivered in a physical sense, but they affect the institutions, pricing, reliability 

and regulation of this essential service. Previously, the power industry was one of the most 

heavily regulated in the U.S. It was characteristic of a structure dominated by vertically 

integrated utilities, regulated primarily at the state level. That is, the functions of generation, 

transmission, and distribution were responsibilities of a single entity. Restructuring and 

realignment, which started in the early 1990’s has altered the rules that governed control, 

operation, ownership, and regulation of the industry. The traditional integrated utility has 

been disaggregated. Generation is now controlled or owned and operated by private, non-
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regulated companies. Electricity prices, instead of being set by regulators, are determined by 

supply and demand in the market. States have moved away from regulations that set rates for 

electricity and toward oversight of an increasingly deregulated industry. Transmission, 

however, remains regulated as a natural monopoly to ensure open and non-discriminatory 

access, a central component of the competitive electricity market. 

The wholesale electricity market design that is being practiced in different regions in 

the U.S. is the Wholesale Power Market Platform (WPMP) rooted in Hogan (1992). 

California, the Mid-Atlantic States, New England, New York, the Midwest, and the 

Southwest have adopted or implemented this design to some extent. The central idea of the 

proposal is the operation of wholesale power markets by Independent System Operators 

(ISOs) or Regional Transmission Organizations (RTOs) using locational marginal pricing to 

price power energy. To be specific, load serving entities (LSEs) and generators submit to the 

ISO bids and offers, respectively, which reflect their supply and demand curves. Then the 

ISO determines the power dispatch and the locational marginal price (LMP) at each node for 

each hour, by solving the security-constrained economic dispatch problem (SCED). Basically, 

the ISO maximizes the total social surplus subject to a set of constraints.  

In this dissertation, we focus on the U.S. electric power industry and address two 

related issues under hot debate in the transition process: Transmission investment, and 

financial transmission rights (FTRs). People have been looking for or creating incentives for 

encouraging efficient investment in transmission expansion. One of the proposals is that 

FTRs might be able to do this job. 

(1) Transmission investment 

Among the many challenges that need to be overcome in the restructuring process, 

those revolving around transmission expansion and investment have turned out to be the 

most debatable and intractable. Transmission expansion planning is the process of deciding 

how and when to invest in additional transmission facilities. These decisions have significant 

consequences on the reliability and efficiency of the future power system. In addition, they 

usually involve large capital expenditures and complex regulatory processes. Previous to 

deregulation, the necessary coordination between the two highly independent functions, 

namely generation planning and transmission planning was carried out in an intentionally 
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integrated fashion, often involving the same people, targeting the objectives of the 

organization’s management to whom the analysts and decision-makers reported. 

Transmission enhancements that affected multiple utilities were handled through bilateral 

coordination or through well-structured coordinating bodies. The utility paid for transmission 

upgrades and recovered regulatorily approved costs through customer rates. Under 

deregulation, the number of organizations involved in generation planning and transmission 

planning is significantly increased, each with their own objectives. Generation is planned by 

a multiplicity of companies seeking to maximize their individual profits through energy sales, 

while transmission is planned by transmission owners seeking to maximize their profits 

through transmission services, all overseen and coordinated by a centralized authority, 

usually ISO or RTO, seeking to ensure grid reliability and market efficiency. The increased 

number of stake holders requires procedures for coordinating among them the necessary 

analyses, decisions, and financial implications. Besides, it motivates the need for incentives 

so that organizations perceive transmission investment and ownership to be attractive.  

There has been insufficient investment in transmission expansion relative to growing 

demands and generation capacities. Different approaches to attract or incentivize efficient or 

optimal transmission investment have been put forward. They all fall somewhere between the 

two extremes: completely regulated transmission investment and purely market-based 

transmission investment. The consensus has been reached that we can not solely depend on 

markets for optimal transmission investment, and some sort of regulation and supervision is 

necessary, although the extent of centralization versus decentralization in transmission 

investment is still an open question.  

To create incentives for efficient transmission investment, we need to develop an in-

depth understanding of transmission market design, to which this dissertation makes its 

contribution. The literature tends to emphasize that the reasons for necessity of regulation 

mainly lie in market power in wholesale electricity market and natural monopoly in 

transmission market. Admittedly, the existence of these factors does cause market failure in 

power and transmission markets. However, this is true for any other market as well, so does 

not say anything specific to the power industry. Different from most of the existing paper, 

Chapter 2 of this dissertation clarifies the nature of an externality unique to the power 
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industry, which has never been clearly identified before. Due to this externality, market-

based transmission investment may be inefficient. Our finding facilitates understanding of 

transmission market design and has important implication for defining property rights to 

induce efficient transmission investment.  

The externality we find and other reasons mentioned earlier entail regulation and 

overseeing by a central entity on transmission investment. Market itself will not do the right 

job. One of the responsibilities of such an entity should be to allocate transmission 

investment costs when private incentives fail to cover the expenses of socially beneficial 

investment projects. In Chapter 3, we address the situation in which transmission investment 

enhances the social welfare, but does not benefit market participants equally, such that a 

central authority is needed to decide and impose a proper cost allocation among them in 

order to have the investment undertaken. We use the insights of cooperative game theory to 

define several allocation rules. Each rule provides reasonable cost allocations to the 

electricity cost allocation problem in the situation described above and makes a benchmark 

against which the industry practices can be compared.   

Chapters 2 and 3 both address transmission investment, but they take different 

perspectives. Chapter 2, from the decentralized point of view, studies whether transmission 

investment induced by market is optimal. In contrast, Chapter 3 takes a regulatory 

perspective and inquires what needs to be done by a central planner. These two Chapters 

together make a complete analysis concerning the combination of market and regulator in 

transmission expansion investment.  

(2) FTRs 

Transmission rights stand at the center of market design in the restructured power 

industry. The industry searched for many years without success looking for a workable 

system of physical rights that would support decentralized decisions controlling use of the 

grid. In the design built on the centerpiece of a coordinated spot market, physical 

transmission rights or any associated scheduling priority would create perverse incentives 

and conflicts with priority defined by the bids used in a security-constrained dispatch. Since 

physical rights will not work, something different is needed to achieve the same objective in 

providing a compatible definition of transmission rights for a competitive electricity market. 
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Congestion that causes electricity prices to differ across nodes, leads to the interest in 

financial transmission rights (FTRs) used as a hedging tool against congestion and price 

uncertainty. A coordinated wholesale market with LMPs complemented by FTRs is a 

hallmark of market design that works. Now it is a common practice in the U.S. wholesale 

power market for ISO to issue FTRs. An FTR is a financial instrument that entitles the holder 

to compensation for transmission congestion costs that arise when the transmission grid is 

congested. The amount of compensation is based on the differences in the day-ahead LMPs. 

They do not protect market participants from congestion charges related to scheduling power 

in the real-time market or deviating from the day-ahead schedule. Nor do they hedge against 

transmission loss charges. Besides, FTRs are independent of the physical power dispatch. 

The FTR holder has the financial right to the congestion rent between two specified nodes 

regardless of the actual energy deliveries. 

According to the literature, there are four types of FTRs: point-to-point (PTP) 

obligation, PTP option, flowgate (FG) obligation, and FG option (Hogan 2002). An FTR 

obligation entitles its holder to a positive revenue when the day-ahead congestion occurs in 

the direction as defined by the FTR and to a negative revenue (i.e. to a loss) when the day-

ahead congestion occurs in the opposite direction. An FTR option, in contrast, never results 

in negative revenue, because when the congestion happens in the opposite direction, the FTR 

option holder is not obligated to pay. Therefore, other things being equal, the FTR option has 

a higher value than that of the obligation.  

Up to now, FTRs have been widely used in major U.S. wholesale electricity markets, 

such as the Pennsylvania, New Jersey and Maryland (PJM), New York and California 

markets. Some empirical work has been done on those relatively mature markets to evaluate 

the efficiency of FTR market and test the validity of the underlying theory. The main finding 

is the inefficiency in FTR market practice. More recently, in April 2005 the Midwest ISO 

(MISO) kicked off its wholesale electricity market together with the FTR market. Little effort, 

however, has been made to analyze the performance of this new FTR market. Data 

availability is one of the reasons for scarcity of such studies. In Chapter 4, we take the 

initiative in analyzing this transient market theoretically and empirically. Using the data of 

LMPs and MISO monthly FTR auction results in the one-year period April 2005-March 2006, 
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we assess the performance of the MISO FTR market so far. At the same time, we point out 

the flaws in previous empirical studies on FTR markets. The limited data make it impossible 

to make complete analysis or reach definite conclusions and we have to make some 

simplifying assumption in our studies. But to address this problem, we indicate what data 

will be needed for further studies.  

Chapter 4 is related to the preceding two chapters, as FTRs, apart from being a 

hedging instrument, have also been argued to be potential, effective incentives for 

transmission expansion. Whether or not FTR markets work well in practice affects the 

possibility of using FTRs for transmission investment incentives. 

Here is the outline of the dissertation. In the current chapter, we provide some 

background information of our research. Chapter 2 investigates the efficiency attributes of 

market-based transmission investment and clarifies the nature of the externality created by 

loop flows that can cause inefficient transmission investment. We study the allocation of 

transmission investment cost and propose several cost allocation rules within the framework 

of cooperative game theory in Chapter 3. In Chapter 4, we analyze FTRs and the MISO FTR 

market and evaluate its performance and efficiency. The main conclusions from Chapters 2-4 

are summarized in the final chapter.  
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CHAPTER 2.  MARKET-BASED TRANSMISSION 
INVESTMENT UNDER PERFECT COMPETITION:  IS IT 

EFFICIENT? 

2.1  Introduction 

Since the 1990's, the U.S. power industry has been going through a fundamental 

restructuring from heavy regulation to competition. Transmission networks play a critical 

role in providing access to all participants in a competitive market for supply and delivery of 

electric power. A more robust transmission system would bring in competitive bidders from 

far away and eliminate the chance of dominant generators exercising market power due to 

transmission constraints. Reality is that investment in transmission expansions has been 

insufficient relative to the needs for expanding generation capacity and growing demand. 

Lack of transmission investment limits our ability to maintain or improve electric reliability, 

accommodate growing loads and incorporate higher generation capacities. It is necessary and 

urgent to develop a transmission network that enhances efficiency of a competitive market. 

To do that, we need to find solutions with regard to signals and incentives for encouraging 

efficient investments in transmission expansion. 

Power generation and electricity marketing are generally considered to be areas in 

which competition might work and deregulation has taken place. Transmission, in contrast, is 

still natural monopoly and a limited amount of merchant transmission investment has been 

forthcoming to date in electricity markets where it is permitted and encouraged (Joskow and 

Tirole (2004)). There has been an intense debate regarding the best way to attract or 

incentivize investment in transmission and different approaches have been proposed. Some 

take a more decentralized manner and argue for merchant or market-based transmission 

investment. The other, from a more centralized point of view, emphasizes the importance of 

regulation in transmission investment. Hogan (1992) proposes a contract network pricing 

model, using congestion payments as the rental fee for use of the capacity rights. Within this 

contract network regime, Bushnell and Stoft analyze the potential of "transmission 

congestion contracts (TCCs)" being an incentive for grid investment. In Bushnell and Stoft 
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(1996a), they show that under certain conditions the contract network approach can 

effectively deter detrimental investments. They formalize a rule for allocating TCCs to those 

who provide grid improvements that might allow a decentralized, profit-driven market to 

carry out efficiently the difficult function of grid modifications. Following these, Bushnell 

and Stoft (1997) outline a process by which transmission planning and investment would be 

undertaken by competitive entities in a lightly regulated environment and analyze how the 

network externalities can be managed successfully by the system proposed. The analyses in 

those papers arguing for market-based transmission investment are mainly based on 

assumptions equivalent to the ones of a model of perfect competition. In a recent paper, 

Joskow and Tirole (2005) points out that those assumptions exclude several attributes of 

power markets and transmission networks, such as market power in wholesale electricity 

markets, lumpiness in transmission investment opportunities and stochastic attributes of 

transmission networks, etc. The authors conclude that without the perfect competition 

assumptions, inefficiencies may result from reliance on the merchant transmission 

investment framework. Gans and King (1999) find that current options of market-driven 

investment are unlikely to be adequate in terms of encouraging socially optimal levels and 

timing of new transmission investment. As an alternative, they propose a regulatory scheme 

to overcome that problem. Shang and Volij (2004) address cost allocation of transmission 

investment from the perspective of cooperative game theory. They identify the situation 

where transmission investment will benefit society as a whole, but not every market 

participant. In this case, no coalition is prepared to undertake the investment and a regulatory 

decision to approve the investment and allocate the costs is required. Leautier (2000), Grande 

and Wangesteen (2000) and Vogelsang (2001) focus on the design of economic regulatory 

mechanism for Transcos. The main idea is that an incentive-compatible regulatory 

mechanism for a Transco must provide incentives to the regulated firm to make efficient 

investment decisions, and must also permit it to earn enough revenues to cover its cost. 

Although the extent of regulation versus deregulation in transmission investments is still 

under hot debate, it is now agreed that we can not solely count on market for such 

investments and that regulation is needed to achieve efficient investment. Hogan (1999) 

emphasizes that with TCCs to allocate transmission benefits, it would be possible to rely 
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more on market forces, partly if not completely, to derive transmission expansion. Hogan 

(2002b) generalizes Bushnell and Stoft's analysis and makes a preliminary attempt to 

analytically provide some axioms to properly define LT FTRs (long-term financial 

transmission rights)1. He declares that reliance on merchant investments may not cover all 

cases, but it could provide an efficiency improving complement to regulated, rate-based 

transmission investment. The main approaches of attracting investment in the long-run 

transmission expansion are discussed in Rosellon (2003). 

So far, the most often cited reason for the necessity of regulation in transmission 

investment is that market power in the electricity and transmission markets will cause market 

failure. As mentioned just now, Joskow and Tirole (2005) claim that due to the attributes 

such as market power and economies of scale, market-based transmission investment may 

result in inefficiency. However, the existence of those attributes can lead to market failure in 

any market. They are neither special to nor inherent in the power market. If they were the 

only cause for transmission investment inefficiency, there would be no need to single out the 

power industry for intensive research, and we could simply borrow the recipe from the other 

industries. What is of greater significance, actually, is something inherent in or unique to 

power transmission, if there is any. Knowing them help us understand power transmission 

market design principles better and find solutions to incentivizing efficient transmission 

investment. In this paper, we identify and address one such thing that should be given more 

notice. 

It is well known that generation of power can be efficiently decentralized by means of 

a price system and competitive markets. Indeed, Chao and Peck (1996) show that for a fixed 

grid, a competitive equilibrium is efficient. In other words, the equilibrium nodal and 

transmission prices induce an efficient dispatch. It is also known that this result breaks down 

as soon as the grid itself is endogenous (Bushnell and Stoft (1996a, 1997)). That is, there is a 

market failure in the power market once investment in transmission is allowed. The alleged 

reason for this market failure is the externalities created by loop flows2. That loop flows are 

responsible for the market failure in transmission investment is clear, since a power market 

                                                 
1 FTRs and TCCs are the same thing under different names 
2 There are externalities when the actions of one agent directly affect the payoff of another agent associated with a fixed 
action. 
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with endogenous investment in a radial network can be efficiently decentralized through a 

market mechanism3. However, the nature of the externalities created by loop flows has, to 

the best of our knowledge, never been identified. In most papers, these externalities are either 

taken for granted or addressed ambiguously. Only Chao and Peck (1996) touches the brink 

by mentioning that "new investments in transmission capacity are likely to change the 

physical characteristics (e.g. impedances) of the existing network, raising the issue of 

investment externality", but fails to go further into the problem. 

Is the addition or removal of transmission circuits necessary for markets to fail? In 

other words, if we only allow investment that results in an upgrade of the line capacities of a 

given grid, will a competitive equilibrium allocation fail to be efficient? Are the externalities 

created by loop flows due to the fact that the allowable injections at one node depend on the 

injections at the other nodes? Or are they related to the fact that changes in line capacities 

affect the set of feasible injections into the grid? Does the existence of loop flows result in 

externalities for sure? These questions need to be answered in order to understand how loop 

flows create externalities that cause the market failure with endogenous transmission 

investment. In this paper, using a partial equilibrium approach, we clarify the nature of the 

externalities associated with loop flows that cause transmission investment to be inefficient. 

The bottom line is that transmission investment introduces an externality only if it affects the 

flow of power along the lines for any given set of net injections. For instance, the addition or 

removal of a new circuit will affect the flow of power for any given set of net injections, 

unless of course we are adding or removing part of a radial network. But the increase of the 

operational capacity of a line will not introduce an externality, even if it does change the set 

of feasible injections, unless it also affects the flow of power for any given set of injections. 

From the engineering perspective, there are two options for expanding transmission: 

(1) build new transmission circuits or upgrade old ones and (2) introduce additional control 

capability. Investments in transmission expansion include building new transmission circuits, 

upgrading old and introduce additional control capability. In this paper, we consider 

transmission investments in both options. Although both will continue to exist as options, (1) 

has and will become less and less viable. As a result, there is significantly increased potential 

                                                 
3 A radial network refers to a network with no closed loop. 
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for application of additional power system control in order to strengthen and expand 

transmission in the face of growing transmission usage. However, there has been little effort 

towards planning transmission in the sense of this option, yet the ability to consider it in the 

planning process is a clear need to the industry. In this paper we make steps forward in the 

economic analysis of placing control. 

The rest of this chapter is organized as follows. Section 2.2 is a brief introduction of 

physics fundamentals in power transmission. In section 2.3, we formulate and solve the 

general model with endogenous transmission investment for a fixed grid topology. Sections 

2.4 and 2.5, each give an analytical example of transmission investments in building new 

lines and in placing control, respectively, as an application of the model in section 2.3. Grid 

expansion is studied through a numerical example in section 2.6. The conclusions and 

implications are summarized in the last section. 

2.2  Basics of Power Flow Model 

This section addresses some technical issues related to electric power transmission, 

which are part of our economic model. We employ a simplified power system model as an 

approximation to the AC (alternate current) system, leaving out some aspects such as reactive 

power and line losses. 

2.2.1 Real Power Flow 

Every AC electrical network has both real and reactive power flows. The sinusoidal 

pattern of instantaneous power flow produces a complex power representation with real and 

imaginary parts that correspond to real and reactive power, respectively. In this paper, we 

only consider real power. 

Consider a transmission network consisting of a set of nodes or buses { }NN ,...,1=  

and a set of links { }LL ,...,1= . Each link L∈l represents a transmission line connecting two 

nodes in N through which power can flow4. Not all pairs of nodes need to be connected 

transmission lines. A line connecting nodes i and j is characterized by its impedance denoted 

                                                 
4 By impedance, we mean reactance, the imaginary part of impedance. There may be more than one line between a certain 
pair of nodes. Here we treat them as one line or, by another name one corridor connecting the two nodes. 
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by ijZ 5. We have jiij ZZ = . For each node Nn∈ , let nx denote the net power injection at n. In 

a lossless network, the power injections add up to zero: 0
1

=∑
=

N

n
nx , and thus knowledge of the 

net injections in all but one of the nodes is enough to know the net injection in the remaining 

node. In what follows, we will choose node N to be the residual node (or reference node), and 

express the dispatches in terms of the other N-1 nodes. For each pair of connected nodes ( )ji, , 

let jif → be the flow from i to j through the connecting line. Appendix 1 shows that under 

some certain assumptions, these flows can be written as a linear combination of the net 

injections. Specifically, there are unique coefficients ij
nα , Nn∈ , such that for any 

dispatch ( )Nxx ,...,1  the flow from i to j can be written as: 

∑
−

=
→ ==

1

1

,...,1,  ,
N

n
n

ij
nji Njixf α                                            (1) 

The coefficients ij
nα are known as “distribution” or “shift” factors, interpreted as the 

proportion of the power injected at node n that goes from i to j through the connecting line, 

given node N as the reference node. Note that depending on the dispatch ( )Nxx ,...,1 , jif →  can 

be positive or negative, and that since n
ji

nijji xff α==− →→ , we have ij
n

ji
n αα −= . We will 

sometimes want to talk about the flow along line l connecting nodes i and j, 

wit hout specifying the direction. This flow will be denoted

⎭
⎬
⎫

⎩
⎨
⎧

== ∑∑
−

=

−

=

1

1

1

1

,max
N

n
n

ji
n

N

n
n

ij
nnn xxxf ααα l

l . Accordingly, l
nα  is the proportion of each unit of 

power injected in n that goes in the “positive” direction of line l .  

 In general, the values of the distribution factors depend on the impedances. Given a 

grid, ij
nα are known constants, since ijZ are fixed. For a radial network, however, the 

distribution factors only take the values of 0, 1 or -1, independent of the line impedances. 

That is, for each unit of power injected at one node and withdrawn at another, the lines that it 

                                                 
5 If there are several lines joining i and j, jiZ , the total impedance of the corridor ij equals one over the sum of the 

reciprocals of the individual lines’ impedances. If there is no such line, ∞=jiZ .  
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transits have distribution factors 1 or -1 and the lines it does not go through have the 

distribution factor 0.  

2.2.2 Flow Constraints 

The line flows need to satisfy several constraints. Each transmission line has a 

maximum acceptable flow, called capacity. It is usually determined by the minimum of the 

thermal limit, voltage limit and stability limit of the line. Exceeding the capacity can cause 

physical damage to the transmission line, with subsequent high probability of power failure. 

So the following capacity constraint must be satisfied for each line 

ll kf ≤                                                                     (2) 

Where lk is line l ’s capacity. 

Another set of constraints are called contingency constraints. Sometimes, one or more 

of the transmission lines may be out of work in a contingency. This changes the network and 

leads to a new set of line flows that may no longer meet the capacity limits in (2). For 

operational security, additional restrictions are imposed on the pre-contingency line flows so 

that the post-contingency network flows also satisfy the capacity constraints. These 

additional constraints are nothing more than capacity constraints in a contingency, but they 

constrain the network all the time, not only when a contingency does occur. We will ignore 

contingency constraints in sections 3 and 4 and consider them in section 5. 

2.3  The Model 

In this section, we set up a multi-node power transmission model, using the partial 

equilibrium competitive analysis. In this model, transmission investment is endogenized. The 

purpose is to see if decentralized transmission investment is efficient and why or why not. 

We shall restrict attention to a fixed grid topology, and will comment on the expansion of the 

grid later. 
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2.3.1 Model Specification and Assumptions 

There are two commodities in the economy: power and the numeraire6. The original 

transmission grid consists of N nodes, indexed Nn ,...,1= . Some pairs of nodes are connected 

by transmission lines, and others are not. Let L be the set of existing corridors. In the 

beginning, each corridor, l , has a capacity limit 00 >lk and an impedance 0
lZ . For simplicity, 

we assume that all the existing lines of the network are owned by a single transmission owner 

(TO). 

There is a set E of transmission investment firms indexed by Er ∈ . Through 

investment, they increase the transmission capacities of the different corridors, using the 

numeraire as the input. Each investment firm’s technology is given by a production set 

              ( ) ( ){ } ErIICzLIIIzY r
L

rrrrr
L

rrr ∈≥∈∀≥−=   ,,..., and  0 :,...,, 11 ll              (3) 

where ( ) ++ →⋅ RRC Lr : is investment firm r’s cost function, which is assumed to be twice 

differentiable and convex, with ( ) 0>⋅∇ rC and ( ) 00 =rC . rI l is the extra transmission 

capacity on corridor l created by transmission investment firm r, and rz is the amount of 

numeraire required as input. The total investment on corridor l  is ∑
∈

=
Er

rII ll . As a result of 

the investment, the total capacity of corridor l becomes lll Ikk += 0 . Investment, while 

enhancing the line capacities, may change the impedances at the same time and in turn affect 

the distribution factors7. We will denote the distribution factors by ( )( )Lvvn I ∈
lα to stress their 

dependence on investment. 

Without loss of generality, assume that at each node there is only one consumer and 

one generator, both indexed by the node, Nn ,...,1=  where they are located. Each generator 

produces power using the numeraire according to the following technology: 

( ) ( ){ } NnqCzqqzY nnnnnnn ,...,1  , and 0 :, =≥≥−=  

                                                 
6 Transmission is not directly consumed by the consumers, so we do not view it as a commodity, although there is market for 
it.  
7 Usually when the capacity of a line is enhanced, its impedance will be lower. 
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where ( )nn qC  is generator n’s cost function, which is assumed to be twice differentiable, 

strictly increasing and concave, and satisfies ( ) 00 =nC , nz is the amount of numeraire used 

for production, and nq is the amount of power generated8. 

Each consumer is endowed with a fixed amount 0>nω of the numeraire and has a 

quasi-linear utility function RRRun →× +:  

( ) ( ) Nncmcmu nnnnnn ,...,1  ,, =+= φ  

where 0≥nc and Rmn ∈ are consumer n’s consumption of power and of the numeraire, 

respectively. As usual, ( )nn cφ is assumed to be bounded above, twice differentiable, strictly 

increasing and strictly concave. The total resources of the economy consist of the aggregate 

endowment of the numeraire, ∑
=

=
N

n
n

1
ωϖ . Assume that the consumer at node n owns a 

share j
nθ of the generator located at node j, a share T

nθ of the TO and a share r
nθ of investment 

firm r. Clearly, ∑
=

=
N

n

j
n

1
1θ  for all j = 1,…,N, ∑

=

=
N

n

r
n

1
1θ for all Er ∈ , and∑

=

=
N

n

T
n

1
1θ . The 

shares T
nθ and r

nθ are closely related to what is referred to in the literature as physical 

transmission rights. 

A dispatch is a vector ( ) N
N Rxxx ∈= ,...,1 of net power injections to the grid, one for 

each node such that 0
1

=∑
=

N

n
nx . A dispatch is feasible if it satisfies the following flow 

restrictions, as given in section 2: 

( ) ( )( )∑
−

=
∈ ∈+≤=

1

1

0   ,
N

n
nLvvn LIkxIxf lll

l
l α                                     (4) 

2.3.2 Efficient Allocation 

An allocation in this economy is a description of each consumer's consumption plan, 

each generator's production plan and each investment firm's investment plan. Some 

                                                 
8 In the engineering literature, p, instead of q is usually used for the quantity of power. In our paper, we maintain the 
economics convention, using q as the quantity and reserving p for the price. 
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allocations are not feasible. In order to be feasible, an allocation must satisfy the constraints 

imposed by the economy's resources, technology and grid capacity. Formally, 

Definition 1 A feasible allocation ( ) ( ) ( )( )( )ErL
rrN

nnn
N
nnn Izqzcm

∈∈== −−
ll,,,,, 11 in this economy 

is a specification of a consumption bundle ( ) +×∈ RRcm nn , for each consumer n = 1,…,N, a 

production plan ( ) nnn Yqz ∈− , for each generator n = 1,…,N and an investment plan 

( )( ) rL
rr YIz ∈− ∈ll, for each investment firm Er ∈ , such that 

∑ ∑∑
= ∈=

=++
N

n Er

r
n

N

n
n zzm

11
ϖ                                                       (5) 

∑∑
==

=
N

n
n

N

n
n qc

11

                                                                         (6) 

( )( )( )∑
−

=
∈ ∈∀+≤−

1

1

0   ,
N

n
nnLvvn LIkcqI lll

lα                               (7) 

Condition (5) requires that the total amount of the numeraire consumed and used for 

production and investment should be equal to the amount of the numeraire that is available to 

society. Condition (6) dictates that the total generation of the system should satisfy the 

aggregate demand. Condition (7) requires that the flow along each line should satisfy the 

capacity constraint. 

Although there can be many feasible allocations, not all of them are equally attractive. 

We are interested in those feasible allocations that cannot be improved upon. 

Definition 2 A feasible allocation ( ) ( ) ( )( )( )ErL
rrN

nnn
N
nnn Izqzcm

∈∈== −−
ll

**
1

**
1

** ,,,,,  is efficient (or 

optimal) if there is no alternative feasible allocation 

( ) ( ) ( )( )( )ErL
rrN

nnn
N
nnn Izqzcm

∈∈== −−
ll,,,,, 11  such that 

( ) ( ) ,...,Nncmucmu nnnnnn 1  ,,, ** =∀≥  

with strict inequality for at least one agent n. 

This definition states that when the economy is at an efficient allocation, no other 

feasible allocation can make at least one consumer better-off without hurting any of the other 

agents. 
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2.3.3 Characterization of Efficient Allocation 

When consumer preferences are quasi-linear, the optimal allocation must maximize 

the sum of individual utilities. Consider an allocation 

( ) ( ) ( )( )( )ErL
rrN

nnn
N
nnn Izqzcm

∈∈== −−
ll,,,,, 11 . The total amount of numeraire used as inputs for 

producing power and transmission is ( ) ( )∑ ∑
= ∈

+
N

n Er

r
L

rr
nn IICqC

1
1 ,..., . The leftover to distribute 

among the consumers is ( ) ( )∑ ∑
= ∈

−−
N

n Er

r
L

rr
nn IICqC

1
1 ,...,ϖ . Therefore, given the quasi-linearity 

of the consumers’ preferences, the sum of the utilities can be written 

as ( ) ( ) ( )∑ ∑∑
= ∈=

+−−
N

n Er

r
L

rr
nn

N

n
nn IICqCc

1
1

1

,..., ϖφ . An optimal allocation 

( ) ( ) ( )( )( )ErL
rrN

nnn
N
nnn Izqzcm ∈∈== −−

ll
**

1
**

1
** ,,,,,  therefore solves 

( ) ( ) ( )∑ ∑∑
= ∈=∈∈∈

≥
−−

N

n Er

r
L

rr
nn

N

n
nn

ErLNn
Iqc

IICqCc
r

nn 1
1

1,,
0,,

,...,max φ
l
l

                                (8) 

s.t. ∑∑
==

=
N

n
n

N

n
n qc

11
 

( )( )( )∑
−

=
∈ ∈∀+≤−

1

1

0   ,
N

n
nnLvvn LIkcqI lll

lα  

That is, an optimal allocation maximizes the aggregate surplus subject to the non-

negativity, balancing and flow constraints. For the sake of analysis, assume that ( )⋅l
nα are 

convex functions so that the set of feasible allocations is convex. Let λ and lμ be the 

Lagrangian multipliers of the above constraints, respectively. Then the first order conditions 

for an efficient allocation are 

( ) ( )( )∑
∈

∈ −=∀>−≤
∂
∂

L
nLvvnn

n

n NncIc
c l

l
l 1,...,1  ,0 ifequality   with , *** μαλ

φ
 

( ) 0 ifequality   with , ** >≤
∂
∂

NN
N

N cc
c

λ
φ  

( )( ) ( ) 1,...,1  ,0 ifequality   with , *** −=∀>
∂
∂

≤−∑
∈

∈ Nnqq
q
C

I nn
n

n

L
Lvvn

l
l

l μαλ  
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( ) 0 ifequality   with , ** >
∂
∂

≤ NN
N

N qq
q
C

λ  

( )( )( ) ( ) ErLII
I
Ccq

I
I

Lvvr

r

nn
Lz

N

n

Lvv
z
n

z ∈∈∀>
∂
∂

≤−
∂

∂
− ∈

∈

−

=

∈∑ ∑ ,  ,0 ifequality   with , ****
1

1

*

ll

ll

l

α
μμ

            ∑∑
==

=
N

n
n

N

n
n qc

1

*

1

*  

( )( )( )∑
−

=
∈ ∈∀>+≤−

1

1

*0***   ,0 ifequality   with ,
N

n
nnLvvn LIkcqI llll

l μα  

Let ( ) ( ) ( )( )( )ErL
rrN

nnn
N
nnn Izqzcm

∈∈== −−
ll

**
1

**
1

** ,,,,,  be an efficient allocation. The last two 

equations are the feasibility conditions: aggregate consumption should be equal to aggregate 

power generation, and the resulting dispatch should induce line flows that respect the 

corresponding capacity constraints. The multipliers lμ , for L∈l are the marginal social 

benefit that would result from an increase of one MW in the transmission capacity of linel . 

Equivalently, they are the marginal social cot of having one MW less of capacity available on 

line l . Only if the capacity constraint is binding at the efficient allocation, can this marginal 

social benefit be positive. The multiplier λ is the marginal social benefit of one MW 

consumed at the residual node N, or equivalently the marginal social cost of one MW 

produced at node N. 

The first two sets of conditions require that the private benefit from an additional unit 

of power supplied at node n, for n = 1,…,N, be equal to the social cost of supplying it at that 

node, unless 0* =nc , in which case the private benefit can be lower than the social cost. Here 

the social cost of supplying one MW at node n equals the social cost of supplying one MW at 

the residual node, λ , plus the social cost of transmitting it to node n, which is given 

by ( )( )∑
∈

∈−
L

Lvvn I
l

l
l μα * . 

To see this, note that ( )( )Lvvn I ∈
*lα  is the fraction of each MW injected at node n that 

goes through line l in the “positive” direction. The social cost of transmitting this fraction 

along this line is ( )( ) l
l μα Lvvn I ∈

* . As a result, the cost of transmitting one MW from node n to 
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node N is ( )( )∑
∈

∈
L

Lvvn I
l

l
l μα * . Consequently, the social cost of transmitting one MW in the 

opposite direction, namely from N to n, is ( )( )∑
∈

∈−
L

Lvvn I
l

l
l μα * .  

The second two sets of equations necessitate that the private cost of generation of one 

MW at each node n, should be equal to the social cost of an additional MW at that node, 

unless 0* =nq , in which case the private cost can be greater than the social cost. As explained 

earlier, the social cost of an additional MW at node n is ( )( )∑
∈

∈−
L

Lvvn I
l

l
l μαλ * .  

Lastly, the third set of equations demand that the marginal private costs of investing 

in capacity of line l be equal to the social benefit of that investment, unless 0* =lI , in which 

case the private cost of the investment can be greater than the social benefit. This social 

benefit has two components. One is the social benefit of the increased capacity of the line, 

which is lμ . The other is the social cost that results from the change in the distribution factors 

that is caused by the investment on line l . To calculate this social cost, note that the 

investment causes the distribution factors to change at a rate of
( )( )
lI

I Lvv
z
n

∂
∂ ∈

*α
. Given that the 

injection at node n is **
nn cq − , this means that the flow along line z due to this injection 

increases by 
( )( )( )**

*

nn
Lvv

z
n cq

I
I

−
∂

∂ ∈

l

α
, which amounts to saying that the given injection requires 

more of the capacity of line l . Therefore, the social cost of this required capacity is 

( )( )( )**
*

nn
Lvv

z
n

z cq
I
I

−
∂

∂ ∈

l

α
μ . As a result, the total social cost that results from the change in the 

distribution factors induced by the investment in line l is given by 

( )( )( )**
1

1

*

nn
Lz

N

n

Lvv
z
n

z cq
I
I

−
∂

∂∑ ∑
∈

−

=

∈

l

α
μ .  

2.3.4 Competitive Equilibrium 

Now that we have a characterization of the efficient allocation, we can ask how to 

implement it. One alternative would be to impose it by a central planner. This entity knows 
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what the efficient allocation is and can, in principle, dictate the optimal generation levels to 

the generators and the optimal capacitor-induced capacity enhancement to the investment 

firm. In reality, however, trying to impose an allocation on the different players may be an 

impossible task. One would have to know the cost structure of every generator and of the 

investment firms, and more importantly, one would have to possess the power to impose on 

them the optimal generation and investment levels. Another alternative would be to 

decentralize the decisions by means of a price system and competitive markets. The idea of 

such a price system is to allow the generators and investment firms to decide for themselves 

the generation and investment levels, respectively, taking electricity prices and transmission 

charges as given. The objective is still the same, but the huge task of determining the optimal 

allocation is now subdivided into many small tasks, each performed by an economic agent. 

Nobody needs to know the technology or cost structure of all the firms. It is enough for each 

firm to know its own cost function. Similarly, it is not needed for any omniscient central 

planner to figure out the optimal allocation. Each agent will try to maximize her own profit 

or utility given the market prices. Presumably, the agents will decide what is best for them, 

but if the prices are right, these prices will induce the agents to choose the quantities that 

correspond to the efficient allocation. 

We now describe a competitive equilibrium. In the equilibrium, there will be 

electricity prices np associated with each node (the nodal prices) n = 1,…,N and transmission 

price lt for each corridor L∈l . The price of the numeraire is normalized to unity. Each 

generator decides how much electricity to produce in response to its own nodal price and 

each consumer decides how much electricity to consume in response to her own nodal price. 

Given all the nodal prices and transmission prices, each investment firm chooses how much 

extra capacity to build through transmission investment. After the investment, the 

transmission investment firms become the owners of the newly produced capacities. In order 

for the nodal and transmission prices ( ) ( ) L
N
nn tp ∈= ll,1 to be in equilibrium, they must satisfy a 

no-arbitrage condition. Specifically, it must be impossible for any individual to make a 

positive profit by buying power at a given node and selling it at a different node at the 
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corresponding nodal prices after paying the transmission charge induced by this transaction. 

We define a competitive equilibrium as follows. 

Definition 3 An allocation ( ) ( ) ( )( )( )ErL
rrN

nnn
N
nnn Izqzcm ∈∈== −−

ll
**

1
**

1
** ,,,,,  and a price vector 

( ) ( ) ( )( )L
N
nn tptp ∈==

ll,, 1  constitute a competitive equilibrium if the following conditions are 

satisfied: 

1. Generators’ profit maximization: For each generator n = 1,…,N, ( ) nnn Yqz ∈− ** ,  satisfies 

( ) nnnnnnnnn Yqzzqpzqp ∈−∀−≥− ,  ,**  

2. Investment firms’ profit maximization: For each investment firm Er ∈ , 

( )( ) r
L

rr YIz ∈− ∈ll
** , satisfies 

( )( )∑∑
∈

∈
∈

∈−∀−≥−
L

r
L

rrrr

L

rr YIzzItzIt
l

llll
l

ll ,  ,**  

3. Utility maximization: For each consumer n = 1,…,N, ( )** , nn cm solves 

( )
( )nnnRRcm
cm

nn

φ+
+×∈,

max  

s.t. ( )∑ ∑∑ ∑
= ∈∈ ∈

+⎟
⎠

⎞
⎜
⎝

⎛
−+−+≤+

N

j L

T
n

Er L

rrr
njjj

j
nnnnn ktzItzqpcpm

1

0****

l
ll

l
ll θθθω  

4. No arbitrage: for any dispatch ( ) N
N Rxx ∈,...,1 such that∑

=

=
N

n
nx

1
0  

( )( )∑ ∑ ∑
= ∈ =

∈ ≥+
N

n L

N

n
nLvvnnn xItxp

1 1

* 0
l

l
l α                                              (9) 

5. Market clearing:  

ϖ=++ ∑∑∑
∈== Ez

r
N

n
n

N

n
n zzm *

1

*

1

*                                                                   (10) 

∑∑
==

=
N

n
n

N

n
n qc

1

*

1

*                                                                                       (11) 

( )( )( )∑
−

=
∈ ∈∀>+≤−

1

1

*0***   ,0 ifequality   with ,
N

n
nnLvvn LtIkcqI llll

lα      (12) 

The first two conditions state that generators and transmission investment firms 

choose production and investment plans that maximize their profits, given the competitive 
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prices. The third condition states that consumers maximize their profits given their budget 

constraints. Condition 4 is the no-arbitrage condition; it should be impossible to find a 

dispatch that yields positive profits. Condition 5 dictates that in a competitive equilibrium 

market must clear for each good: the numeraire, power and transmission, respectively. (11) 

actually requires that the total amount of power consumed is equal to the total amount of 

power produced. (12) says that in equilibrium the price of transmission on a line is positive 

only when the demand for transmission equals the supply of transmission on that line9. 

Alternatively, the transmission price is zero when there is excess capacity. 

2.3.5 Characterization of Competitive Equilibrium 

Now let us characterize the five conditions in the above definition. Condition 1 says 

that each generator maximizes its profit, given its own technology and nodal price: formally, 

it chooses *
nq , so as to solve: 

( )nnnnq
qCqp

n

−
≥0

max  

Given our assumptions on the cost function, the necessary and sufficient conditions for *
nq to 

solve the above problem are 

( )
Nnq

q
qC

p n
n

nn
n ,...,1 ,0 ifequality   with , *

*

=∀>
∂

∂
≤                          (13) 

In condition 2, each investment firm maximizes its profit, taking as given the transmission 

price on each line and its own technology: it chooses ( )**
1 ,..., r

L
r II which solves: 

( )∑
∈∈∀

−
L

r
L

rrr

LI
IICIt

r
l

ll
ll

,...,max 1
,

 

The corresponding necessary and sufficient conditions are 

    ( ) ErIII
I
Ct rrr

r

r

∈∀>
∂
∂

≤  ,0 ifequality  with ,,..., ***
1 ll

l

l                      (14) 

Condition 3 in the definition states that each consumer maximizes her utility, in 

response to the nodal price at her own node: she solves the problem 

                                                 
9 That is, when the line is congested. 
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( )
( )nnnRRcm
cm

nn

φ+
+×∈,

max  

s.t. nnnn wcpm ≤+  

where ( )( ) ( ) ∑∑ ∑ ∑
∈= ∈ ∈

+⎟
⎠

⎞
⎜
⎝

⎛
−+−+=

L

T
n

N

j Er L

rrrr
njjjn

j
nnn ktICItqCqpw

l
ll

l
lll

0

1

**** θθθω is consumer n’s 

wealth. Given our assumptions about the utility functions, the necessary and sufficient 

conditions for a utility maximizing bundle are 

( )
Nncp

c
c

nn
n

nn ,...,1 ,0 ifequality   with , *
*

=∀>≤
∂

∂φ
                         (15) 

As for the no-arbitrage condition 4, we will show that a necessary and sufficient 

condition for it to hold is that the price at the residual node N be equal to the nodal price at 

each node n=1,…,N-1 plus the charge that results from the transmission of one unit of power 

from node n to node N. Formally, condition (9) is equivalent to 

( )( )∑
∈

∈ −=∀+=
L

LvvnnN NnItpp
l

l
l 1,...,1  ,*α                                    (16) 

To see that this condition is necessary, note that (9) should be satisfied with equality, since 

if ( )Nxx ,...,1 is a feasible dispatch, so is ( )Nxx −− ,...,1 . Therefore, 

( )( )∑∑
∈

∈
=

=+
L

nLvvn

N

n
nn xItxp

l

l
l 0*

1
α  

Taking 1=Nx , 1−=mx , and 0=kx , for Nnk ,≠ , and rearranging it we get condition (16). 

To see that this condition is also sufficient, note that if (16) holds for  n=1,…,N-1, then we 

have that for any feasible dispatch ( )Nxx ,...,1  

( )( )∑
∈

∈ −=∀+=
L

nLvvnnnnN NnxItxpxp
l

l
l 1,...,1  ,*α  

Adding over 1,...,1 −= Nn  we get 

( )( )∑∑∑∑
−

= ∈
∈

−

=

−

=

+=
1

1

*
1

1

1

1

N

n L
nLvvn

N

n
nn

N

n
nN xItxpxp

l

l
lα  

which, given that ∑
−

=

−=
1

1

N

n
nN xx implies the no arbitrage condition (9).  
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The last condition says that at the equilibrium prices, supply equals demand for the 

numeraire, power and transmission, respectively. In all, conditions (10) through (15) must 

be satisfied in a competitive equilibrium.  

To summarize, the necessary and sufficient conditions for allocation 

( ) ( ) ( )( )( )ErL
rrN

nnn
N
nnn Izqzcm ∈∈== −−

ll
**

1
**

1
** ,,,,,  and price vector ( ) ( ) ( )( )L

N
nn tptp ∈==

ll,, 1  to be a 

competitive equilibrium are 

( )
Nnq

q
qC

p n
n

nn
n ,...,1 ,0 ifequality   with , *

*

=∀>
∂

∂
≤                                 (17) 

( ) ErIII
I
Ct rrr

r

r

∈∀>
∂
∂

≤  ,0 ifequality  with ,,..., ***
1 ll

l

l                              (18) 

( )
Nncp

c
c

nn
n

nn ,...,1 ,0 ifequality   with , *
*

=∀>≤
∂

∂φ
                                  (19) 

    ( )( )∑
∈

∈ −=∀+=
L

LvvnnN NnItpp
l

l
l 1,...,1  ,*α                                             (20) 

ϖ=++ ∑∑∑
∈== Ez

r
N

n
n

N

n
n zzm *

1

*

1

*                                                                        (21) 

∑∑
==

=
N

n
n

N

n
n qc

1

*

1

*                                                                                            (22) 

( )( )( )∑
−

=
∈ ∈∀>+≤−

1

1

*0***   ,0 ifequality   with ,
N

n
nnLvvn LtIkcqI llll

lα           (23) 

2.3.6 Comparison between Competitive Equilibrium and Efficient 
Allocation 

So far, we have derived the conditions for both the competitive equilibrium and 

efficient allocation. Now comes the question we are interested in: is the market outcome 

socially efficient? Or equivalently, can the efficient allocation be decentralized? To answer 

the question, we need to compare the two sets of conditions. 

The main observation we can make is that if for each lines, L∈',ll , and for each 

node Nn∈ , investment in line l does not affect the distribution factor
'l

nα , that is, if 
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( )( )
0

*

=
∂

∂ ∈

lI
I Lvv

z
nα

, then every efficient allocation can be decentralized by competitive prices, 

and every competitive allocation is efficient. Indeed, it is easy to see that ifλ and ( ) L∈llμ are 

the Lagrangian multipliers that, together with ( ) ( )( ),,
*

1
** ,, LEr

rN
nnn Iqc ∈∈= ll solve the necessary and 

sufficient conditions for an efficient allocation, then λ=Np , ∑
∈

−=
L

nnp
l

l
lμαλ for 

1,...,1 −= Nn , and ll μ=t , for L∈l  are the nodal and transmission prices that support the 

corresponding efficient allocation. And conversely, if ( ) ( )( )L
N
nn tp ∈= ll,1 are competitive 

equilibrium prices that together with ( ) ( )( ),,
*

1
** ,, LEr

rN
nnn Iqc ∈∈= ll  solve the necessary and 

sufficient conditions for a competitive equilibrium, then Np=λ , and ll t=μ , together with 

( ) ( )( ),,
*

1
** ,, LEr

rN
nnn Iqc ∈∈= ll  satisfy the necessary and sufficient conditions for an efficient 

allocation.  

In general, however, the distribution factors
'l

nα are affected by the investment in the 

different lines. That is, transmission investment usually changes the flow of power along the 

lines for a given set of injections. This externality is the root cause of the inefficiency of the 

competitive allocations, and of the fact that efficient allocation cannot be decentralized by 

means of competitive prices. Suppose the transmission investment in line l enhances
'l

nα for 

some line L∈'l . Without loss of generality, let us assume that 0
'

>l
nα . Then for each unit of 

power injected at n, a larger proportion will transit line 'l  as a result of the investment. Recall 

that nx , the net power injection at node n can be positive or negative. Someone who injects 

nx at n will have to pay nn x
'lα times the corresponding transmission price for using line 'l . 

Suppose that line 'l is congested, so that its transmission price is positive. Then if 0>nx , the 

injector will need to make a positive payment; if 0<nx , the injector (or actually the ejector 

in this case) will pay a negative amount. Since
'l

nα increases after the investment, the 

congestion payment will be higher than before for 0>nx and lower than before for 0<nx . So, 

the transmission investment creates a negative externality towards those who inject power at 
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node n and a positive externality for those who eject power at n. Clearly, this externality is 

relevant only if the line is congested. The transmission investment in one linelmay change 

the distribution factors of several lines in the network and have an externality on each of the 

affected lines. The sum of the values of all these externalities is the total effect caused by the 

investment on line l , indicated by the expression
( )( )( )**

1

1

*

nn
Lz

N

n

Lvv
z
n

z cq
I
I

−
∂

∂
∑ ∑
∈

−

=

∈

l

α
μ . As this 

effect is not taken into account by the competitive prices, one would expect competitive 

markets to result in under- or over-investment in transmission. One way to restore efficiency 

is to impose a unit tax of
( )( )( )**

1

1

*

nn
Lz

N

n

Lvv
z
n

z cq
I
I

−
∂

∂
= ∑ ∑

∈

−

=

∈

l

l

α
μτ or equivalently a subsidy of 

( )( )( )**
1

1

*

nn
Lz

N

n

Lvv
z
n

z cq
I
I

s −
∂

∂
−= ∑ ∑

∈

−

=

∈

l

l

α
μ on investment in line l . 

Recall that in a radial network the distribution factors are constants of 1, -1 or 0, 

independent of the line impedances. As long as the radial grid topology is not changed by the 

transmission investment, the distribution factors will remain the same. And there will be no 

investment externality. Consider the network in figure 1. If new transmission lines are built 

between nodes 1 and 3 or between 2 and 3, the grid topology will not change and the 

distribution factors will be the same as before regardless of the newly created capacities. In 

that case, 
( )( )

0
*

=
∂

∂ ∈

lI
I Lvv

z
nα

, for all 2,1 , =zl and 3,2,1=n and the investment in equilibrium 

will be efficient. If new lines are built between nodes 1 and 2, the grid topology will be 

changed and the network will become a meshed one. We will leave this case for discussion in 

the following subsection.  

Now it is clear that the externalities that cause endogenous transmission investment to 

be inefficient are created by loop flows and there is no externality with radial networks.  But, 

the existence of loop flows does not necessarily cause externalities. It does only when 

transmission investment changes the distribution factors, thus affects the flow of power on 

the lines for a given set of injections. Otherwise, even in the presence of loop flows, there 

will be no externalities and the investment will be efficient. 
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Figure 1: A radial network 

In conclusion, for endogenous transmission investment, the source of the market 

failure lies in the fact that investment affects the power flow through the lines for any given 

dispatch. Efficiency is never guaranteed as long as transmission investment changes the 

distribution factors, whether in the case of a fixed grid topology or grid expansion. There is 

no externality with a radial network if it is still radial after the investment. Interestingly, here 

the action of an investment firm does not directly affect the other investment firms' 

production possibility sets, the generators' production sets or the consumers' preferences. 

Instead, the investment changes the flow structure of the transmission network, which causes 

inefficiency. Therefore, the externality introduced by transmission investment is different 

from the externality in the usual sense. It arises due to the physical aspects in power 

transmission. 

For application of the model, we will, in the following sections, give two analytical 

examples, one about the capacity enhancement via lines and the other about the capacity 

enhancement via control. The comparison of the two examples makes it even clearer when 

transmission investment introduces an externality, hence results in market failure and when it 

does not. 

2.4 Transmission-induced Capacity Enhancement 

The preceding section formulates the general model with a huge transmission 

network. This section presents a simple three-bus example as an application and illustration 

of the general model. In this example, we consider the specific type of transmission 

investment: building new transmission lines or updating existing ones. Look at the grid in 
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figure 2, where there are 3 interconnected nodes, 3,2,1=n . Let 3,2,1=l index the lines 

connecting nodes 2 and 3, nodes 1 and 3 and nodes 1 and 2, respectively. Originally, each 

line has some capacity. The capacities of line 1 and line 2 are so large that they are never 

congested. Besides, they have the same impedance. Let 0k denote the original capacity of line 

3. To make things interesting, suppose that 0k is less than the socially efficient capacity.  

 
Figure 2: A three-node network 

A generator is attached to nodes 1 and 2, respectively, denoted by 1G and 2G . 1G ’s 

cost function is ( )11 qC and 2G ’s cost function is ( )22 qC , where 1q and 2q are the amount of 

power generated by 1G and 2G , respectively, and ( )⋅nC for 2,1=n are strictly convex functions 

that satisfy ( ) 00 =nC . The only load of a constant D MW is located at node 3. There is an 

investment firm that produces transmission capacity by building or updating transmission 

circuits. It only chooses to build lines between nodes 1 and 2, since the other two lines 

already have enough capacities and the price of new transmission will be zero. The 

investment firm's cost function is ( )IC , where I is the additional capacity created on the 

corridor between nodes 1 and 2. 

At a feasible dispatch ( )21 ,qq , the load must be satisfied, that is Dqq =+ 21 and the 

flow along each line should not exceed the line’s capacity limit. In this example, since we 

assume that lines 1 and 2 have large enough capacities, we are only concerned about the flow 

along line 3. Given the dispatch ( )21 ,qq and newly built capacity I, the flow along line 3 from 

node 1 to node 2 can be written as 
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( )( )2112 qqIf −= α  

Where ( )Iα  is the distribution factor10. Clearly, the flow of power along this line depends on 

the dispatch, and the capacity enhancement on the line. 

A feasible allocation consists of a dispatch ( )21 , qq and a capacity investment I, such 

that ( ) ( )( ) IkqqIIk +≤−≤+− 0210 α . Then the optimal allocation ( )( )**
2

*
1 ,, Iqq of this 

economy can be derived by solving the following problem: 

( ) ( ) ( )ICqCqC
Iqq

++
≥ 22110,, 21

min                                                  (24) 

s.t. Dqq =+ 21  

       ( ) ( )( ) IkqqIIk +≤−≤+− 0210 α  

Like before, assume that ( )⋅α is such that the set of feasible allocations is convex. Also, 

assume for simplicity that the above problem has an interior solution and, without loss of 

generality, that at that solution ( )( ) 0*
2

*
1

* ≥− qqIα 11. Letλ andμ be the Lagrangian multipliers 

of the above constraints, respectively. Then the first order conditions for an interior solution 

are: 

( ) ( )*

1

*
11 I

q
qC

μαλ −=
∂

∂  

( ) ( )*

2

*
22 I

q
qC

μαλ +=
∂

∂             

( ) ( )( )*
2

*
1

**

qq
I
I

I
IC

−
∂

∂
−=

∂
∂ αμμ                                        (25) 

Dqq =+ *
2

*
1  

( )( ) *
0

*
2

*
1

* IkqqI +=−α  

Note thatλ is the social cost of satisfying one more MW at node 3 and μ is the marginal 

social benefit from one MW enhancement in the transmission capacity of line 3. The first two 

equations state that at the optimal allocation, the private cost of one more MW generated at 

                                                 
10 Here ααα == 12

2
12
1 , because line 1 and line 2 have the same impedance.  

11 Sufficient conditions for an interior solution would be that marginal costs of generation and investments are 0 when 
evaluated at 0.  
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node n for 2,1=n  must equal the social cost of one more MW at node n for 2,1=n , which is 

equal to the social cost (λ ) of supplying one more MW at node 3 plus the social cost of 

transmitting it to node n. The third equation dictates that marginal private cost of the 

transmission investment in line 3 be equal to its marginal social benefit. This social benefit 

consists of the social benefit of the capacity enhancement on line 3 less the social cost from 

the change in the flow along that line due to the change in the distribution factor. 

( )( )*
2

*
1

*

qq
I
I

−
∂

∂α  is the change in the flow on line 3 for a given dispatch, caused by the 

capacity enhancement and reflects the externality introduced by the transmission investment. 

The last two equations are the market-clearing conditions for electricity and transmission. It 

follows that at an interior efficient allocation ( )( ) 0,, **
2

*
1 >>Iqq , 

( ) ( ) ( )

( ) ( ) ( )*
*
2

*
11

*
11

2

*
22

*

*

1
2 I

qqq
qC

q
qC

I
I

I
IC

α
α −−

=
∂

∂
−

∂
∂

∂
∂

∂
∂

                              (26) 

This equation gives the relation between the optimal generations and investment and will be 

used to for comparison between the optimal allocation and the competitive equilibrium. 

Now look at the market outcome. Let t be the transmission price on the newly built 

line. A competitive equilibrium of this economy consists of an allocation ( )( )**
2

*
1 ,, Iqq and a 

price vector ( )tppp ,,, 321 that satisfy the following conditions: 

1. The investment firm maximizes its profits, given t: *I solves 

( )ICtI
I

−
≥0

max                                                                (27) 

2. Each generator maximizes its profit, given its respective nodal price: *
nq  for 2,1=n  

solves 

( )nnnnq
qCqp

n

−
≥0

max                                                         (28) 

3. Markets clear: 

Dqq =+ *
2

*
1  

( )( ) *
0

*
2

*
1

* IkqqI +=−α  

4. No arbitrage opportunity exists: 
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( )tIpp *
13 α+=                                                               (29) 

( )tIpp *
23 α−=                                                               (30) 

Assume that the investment and production levels are strictly positive in equilibrium. 

Then conditions (27) and (28) can be replaced by the corresponding necessary and sufficient 

conditions for profit maximization as follows: 

( ) t
I
IC

=
∂

∂ *

                                                                       (31) 

( )
2,1  ,

*

==
∂

∂
np

q
qC

n
n

nn                                                     (32) 

Equation (31) says that the investment firm will choose the investment level that equalizes its 

marginal cost with the transmission price. Likewise, each generator maximizes its profit by 

having the marginal cost of its generation equal the electricity price at its own node, as 

indicated by each equation in (32). Substituting (32) into (29) and (30), we get 

( ) ( )tI
q
qC

p *

1

*
11

3 α+
∂

∂
=  

( ) ( )tI
q

qCp *

2

*
22

3 α−
∂

∂
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These two equations together with (31) yield 

( ) ( ) ( ) ( )*
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1
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2

*
22 2 I

I
IC

q
qC

q
qC

α
∂

∂
=

∂
∂

−
∂

∂                                      (33) 

Comparing equations (26) and (33), we can see that unless ( ) 0=
∂

∂
I
IC , that is, unless 

investment does not affect the power distribution factorα , we cannot guarantee that the 

competitive equilibrium is efficient. This divergence results from the effect of transmission 

investment on the distribution factor and the flow structure of the network. In the social 

optimality problem, this effect is internalized, while in the market, the investment firm does 

not take it into account. Therefore, the resulting transmission investment may be inefficient 

due to the externality introduced by the new investment12. This result is consistent with that 

                                                 
12 Note that the investment in line 3 also changes the distribution factors of line 2 and line 3. But we do not need to worry 
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derived from the large model in section 3. In spite of the externality, some government 

intervention can still achieve efficiency via a decentralized market mechanism. For example, 

given enough information, we can apply an ad valorem tax rate equal to ( )( )*
2

*
1

*

qq
I
I

−
∂

∂α . 

This is shown in Appendix 2.  

2.5 Capacitor-induced Capacity Enhancement 

In this section, we will give an example of a different type of transmission investment, 

placing control. A specific control method, adding capacitors is considered here. As a 

capacitor, after being installed, is switched on only in case a contingency, contingency is 

much relevant to this type of capacity enhancement. Therefore, we will need to modify the 

model in section 3 by incorporating the contingency constraints. 

Adding capacitors enhance the capacity of some lines under contingency but does not 

change any capacity under normal conditions. Different from building new lines, this type of 

transmission investment does not affect the line impedances of the network. Hence, the 

power distribution factors under normal conditions and contingency will be the same before 

and after a capacitor is installed. From the results obtained in section 3, we should expect that 

transmission investment via capacitors in equilibrium will be efficient. This is illustrated in 

the following example. 

Consider the 3-node transmission network illustrated in figure 3. Nodes 2 and 3 are 

connected by line 1, nodes 1 and 2, by line 3 and buses 1 and 3, by two lines, line 21 and line 

22. Suppose that line 1 and line 3 have the same impedance and so do line 21 and line 22. 

Further, the impedance of line 1 is half of that of line 21, so that each corridor has the same 

impedance. For simplicity assume that lines 1 and 3 have large enough capacities so that they 

are never congested, whether in the normal conditions or in a contingency. Each of the two 

lines that connect nodes 1 and 3, on the other hand, has a capacity of 1k , determined by the 

voltage or stability limit. 

                                                                                                                                                        
about the flow constraints of those two lines, because they are never congested. 
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Figure 3: The three-node network under normal conditions 

In a contingency, line 21, but not any other line will fail. Suppose that a 20% capacity 

pre-reserved for line 22 will be released in the contingency, so that the maximum flow 

allowed through this remaining line when line 21 fails will be 12 2.1 kk = . Capacities 1k  

and 2k should not be interpreted as a "physical limit" on the flow transmitted through the lines 

but as "operational limit" that results from the satisfaction of the disturbance performance 

criteria for the network. The network under the contingency is shown in figure 4. 

 
Figure 4: Contingency with no capacitor 

As in section 4, a generator is attached to nodes 1 and 2, respectively, denoted by 1G  

and 2G . Their cost functions are ( )11 qC and ( )22 qC , respectively and satisfy the bunch of 

assumptions given in the preceding section. At node 3, there is a constant load of D MW. 

There is also an investment firm that can increase the capacity of the network by installing 

capacitors. As mentioned above, a capacitor is a device that is installed at an appropriate 

node and that can be switched on in case of a contingency. When the capacitor is switched on, 
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the maximum acceptable flow on a given line will be enhanced by certain units. Specifically 

for this example, when the capacitor is switched on, the capacity of line 22 will 

become Ik +2 in the contingency, where I is the capacitor-induced capacity enhancement13. 

The magnitude of I is a decision variable of the investment firm. The cost of increasing the 

contingent capacity by I units is given by, C(I), where again, ( )⋅C  has the same properties as 

mentioned earlier . Figure 5 illustrates the network under the contingency when a capacitor is 

installed and switched on. 

 
Figure 5: Contingency with capacitor installed and switched on 

In order to satisfy the load at node 3, the total generation of the system must satisfy 

Dqq =+ 21 . However, not every dispatch ( )21 , qq  is allowable. Only those that induce flows 

on the lines 21 and 22 that respect their capacity constraints are allowed. Given the basic data 

of the network, in normal circumstances the flow through lines 21 and 22 will be given by 

( ) ( ) 2121222121 6
1

3
1,, qqqqfqqf +== . This flow should not exceed the maximum acceptable 

flow of 1k . Similarly, if a contingency occurs, and line 22 becomes the only line that remains 

connecting nodes 1 and 3, the flow through that line will be ( ) 212122 4
1

2
1, qqqqf c += , which 

should be no greater than Ik +2 . The foregoing discussion suggests that a feasible allocation 

( )( )Iqq ,, 21  must satisfy 

                                                 
13 Actually, the contingency capacity limits of lines 1 and 3 will also be enhanced by the capacitor. But we do not need to 
consider these enhancements, because these two lines already have enough capacities, both in normal conditions and in the 
contingency. 
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Dqq =+ 21  

121 6
1

3
1 kqq ≤+  

Ikqq +≤+ 121 2.1
4
1

2
1  

Among the feasible allocations, those that minimize the social cost are efficient 

allocations. Formally, an efficient allocation ( )( )**
2

*
1 ,, Iqq  solves the following problem: 

( ) ( ) ( )ICqCqC
Iqq

++
≥ 22110,, 21

min                                            (34) 

s.t. Dqq =+ 21     

121 6
1

3
1 kqq ≤+                                                               (35) 

Ikqq +≤+ 121 2.1
4
1

2
1                                                     (36) 

Since the cost functions are assumed to be strictly convex and the constraints are linear, this 

problem has a unique solution.  

Before solving this problem, note that for every dispatch ( )21 , qq , the associated flow 

through line 22 in normal conditions is lower than the flow in the contingency: 

⎟
⎠
⎞

⎜
⎝
⎛ +=+ 2121 4

1
2
1

3
2

6
1

3
1 qqqq . As a result, in the absence of a capacitor ( 0=I ) constraint (35) 

will not bind, or else constraint (36) would be violated. In other words, the contingency 

capacity limit of line 22 causes the capacities of lines 21 and 22 to be underutilized in normal 

circumstances. Hence, the benefit of adding a capacitor consists of allowing a more efficient 

use of a the line capacities under normal conditions and enhancing contingency capacities. 

Obviously, this benefit should be compared to the cost of the capacitor and the incremental 

cost of the new dispatch induced. 

Now solve problem (34) for the efficient allocation ( )( )**
2

*
1 ,, Iqq . Let λ , μ , and η  be 

the Lagrangian multipliers of the constraints in the problem, respectively. Then the FOCs are: 

( )
ημλ

2
1

3
1

1

*
11 −−≥

∂
∂

q
qC  with equality if 0*

1 >q                             (37) 
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( )
ημλ

4
1

6
1

2

*
22 −−≥

∂
∂

q
qC  with equality if 0*

2 >q                            (38) 

( ) η≥
∂

∂
I
IC *

 with equality if 0* >I                                                 (39) 

Dqq =+ *
2

*
1                                                                                    (40) 

1
*
2

*
1 6

1
3
1 kqq ≤+  with equality if 0>μ                                          (41) 

*
1

*
2

*
1 2.1

4
1

2
1 Ikqq +≤+  with equality if 0>η                              (42) 

To understand the above conditions, consider an interior efficient allocation 

( )( ) 0,, **
2

*
1 >>Iqq . Since the generation at both nodes is positive, constraints (37) and (38) are 

satisfied with equality. By inspection, this implies that the marginal cost of a MW at node 1 

is lower than the marginal cost of a MW at node 2. Hence, if we could generate  qΔ  

additional units at the cheaper node 1 and qΔ  less units at the costly node 2, we would save 

the amount 
( ) ( )

q
q
qCq

q
qC

Δ
∂

∂
−Δ

∂
∂

1

*
11

2

*
22 and still satisfies the load. The problem is that we 

cannot transfer qΔ  units of generation from 2G  to 1G  without violating the contingency 

constraint (42). Therefore, if we want to enjoy the above savings we have to relax the 

contingency constraint by means of an increase in the operational capacity of line 22 under 

the contingency. We should increase this operational capacity by a small unit as long as its 

cost is no bigger than the savings induced by the redispatch that this investment allows. At 

the optimum, the marginal cost of the capacity should be equal to or higher than its marginal 

benefit: 

( ) ( ) ( )
q

q
qC

q
q

qC
I
IC

Δ
∂

∂
−Δ

∂
∂

≥
∂

∂

1

*
11

2

*
22

*

 

And this is precisely one of the implications of the FOCs (37)-(42). To see this, note that 

since 0* >I , condition (39) holds with equality, ( ) η=
∂

∂
I
IC *

. By assumption, the marginal 

cost of capacitor-induced capacity is positive, so 0>η  and consequently constraint (42) is 

binding. Let us consider two cases, one with constraint (41) being unbinding and the other 
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that constraint being binding. If constraint (41) does not bind at the optimal allocation, 0=μ . 

A unit of additional capacity in case of a contingency allows us to change the injections in 

nodes 1 and 2, by 1qΔ  and 2qΔ , respectively, where 1qΔ  and 2qΔ  satisfy 

1
4
1

2
1

21 =Δ+Δ qq  

021 =Δ+Δ qq  

This means that the unit of additional capacity allows us to redispatch in a way that 41 =Δq  

and 42 −=Δq . That is, 1G  produces 4 more units and 2G  produces 4 less units. The saving 

in the generation cost induced by this new dispatch is 

( ) ( )

ηημ

ημλημλ

=+=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −−−⎟

⎠
⎞

⎜
⎝
⎛ −−−=Δ

∂
∂

−Δ
∂

∂
−

3
2                                                

4
1

6
1

2
1

3
141

1

*
11

2
2

*
22 q

q
qC

q
q

qC

 

Now consider the second case in which constraint (41) is binding. Although it saves 

and the demand is still satisfied if we could have 1G  produce qΔ  ( 0>Δq ) more and 2G  

produce qΔ  less, this transfer would not be feasible even with the additional unit of 

contingency capacity, because at the new dispatch constraint (41) would be violated: 

0 ,0
6
1

3
1

>Δ∀>Δ−Δ qqq  

In other words, we can only have 0=Δq  and no cost would be saved. Hence, the marginal 

benefit of one more unit enhancement in the contingency capacity is zero, which is less than 

the marginal cost of the capacity ( )
I
IC

∂
∂ *

. In all, the marginal benefit of the investment is no 

greater than its marginal cost at the optimal allocation.  

Knowing the efficient dispatch and investment level, we wonder if they can be 

decentralized by means of a price system and competitive markets. In the following 

definition of economic equilibrium, there will be nodal prices and two different transmission 

changes. Both transmission charges are related to congestion on the 1-3 corridor. One charge 

is associated to the transmission on the corridor under normal conditions and the other, to the 
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transmission under the contingency. The generators and investment firm will take these 

prices as given and make their generation and investment decision optimally. 

An allocation ( )( )**
2

*
1 ,, Iqq  and a price vector ( )π,,,, 321 tppp  constitute a competitive 

equilibrium of this economy if the following conditions are satisfied: 

1. Each generator nG , for 2,1=n , chooses its generation level *
nq  so as to maximize its 

profit given its own nodal price np : 

( ) ( ) 2,1 ,0 ,** =≥∀−≥− nqqCqpqCqp nnnnnnnnn                        (43) 

2. The investment firm chooses the investment level *I  so as to maximize its profit given 

the contingency transmission charge π :  

( ) ( ) 0 ,** ≥∀−≥− IICIICI ππ                                            (44) 

3. Power market clears: 

Dqq =+ *
2

*
1                                                            (45) 

4. Transmission market clears: 

1
*
2

*
1 6

1
3
1 kqq ≤+  with equality if 0>μ                                      (46) 

      *
1

*
2

*
1 2.1

4
1

2
1 Ikqq +≤+  with equality if 0>η                          (47) 

5. No arbitrage opportunity exists: 

π
2
12

3
1

13 ++= tpp                                                    (48) 

π
4
12

6
1

23 ++= tpp                                                    (49) 

Note that the capacitor only enhances the contingency capacity. Accordingly, the 

investment firm will collect the congestion charge in the contingency. Conditions (46) and 

(47) require that the demand for transmission should not exceed the capacity both under 

normal conditions and under the contingency. Besides, the associated transmission charge is 

positive only if the demand for transmission equals the capacity. To understand conditions 

(48) and (49), note that if we inject one MW at node 1 and eject it at node 3, in normal 

circumstances 
3
1  of the MW will transit through each of lines 21 and 22. In a contingency, 
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2
1  of the MW will move along the remaining line 22. Therefore, each MW injected at node 1 

and withdrawn at node 3 must pay 
3
1  of the price of transmission on line 21 and line 22 

together under normal conditions and 
2
1  of the price of transmission on line 22 under the 

contingency. If we add the power price at node 1, the cost of buying one MW at that node 

and transmitting it to node 3 is π
2
12

3
1

1 ++ tp . Condition (48) states that this cost should 

equal the price that one would obtain by selling this MW at the destination node 3. A similar 

interpretation applies to condition (49). The contingency congestion charge is paid not only 

when a contingency occurs, but also when it does not. 

The necessary and sufficient conditions for problems (43) and (44) are: 

( )
n

n

nn p
q

qC
≥

∂
∂ *

 with equality if 0*
1 >q                                       (50) 

      ( ) π≥
∂

∂
I
IC *

 with equality if 0* >I                                          (51) 

In all, a competitive equilibrium is characterized by conditions (50) and (51) and conditions 

(45) through (49). 

By comparison, we see that if an allocation ( )( )**
2

*
1 ,, Iqq  solves the social optimum 

problem (34) with associated Lagrangian multipliers ( )ημλ ,, , then the same allocation 

together with the price vector ( )π,,,, 321 tppp  defined by 

ημλ
2
1

3
1

1 −−=p  

ημλ
4
1

6
1

2 −−=p  

λ=3p  

2
μ

=t  

ηπ =  
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is a competitive equilibrium. Conversely, if an allocation ( )( )**
2

*
1 ,, Iqq  and a price vector 

( )π,,,, 321 tppp  constitute a competitive equilibrium, then the same allocation together with 

the Lagrangian multipliers ( )ημλ ,,  defined by 

3p=λ  

t2=μ  

πη =  

solves the social optimum problem (34). 

The above analysis shows that the competitive equilibrium is efficient. In particular, 

the competitive equilibrium induces the optimal amount of capacitor-induced capacity 

enhancement. The reason is that adding capacitors has no effect on the distribution factors 

under normal conditions or under a contingency. Hence, the flows of power along the lines 

for any given set of injections is unchanged by the investment. Therefore, as long as it leaves 

the flows of power for any given set of net injections unaffected, transmission investment 

will not induce externalities that cause the market to fail even in the presence of loop flows. 

The three-node network is miniature of more complicated, meshed networks and the 

result from this simple example is valid for a network with more nodes. In addition, the 

model here applies to other control methods such as adding SVC (Static Var Compensator) 

and STATCOM (Static Synchronous Compensator), because adding those controllers does 

not change the distribution factors, either. Therefore, the result from this example can be 

extended to the general control approach. 

2.6 Grid Expansion 

So far, we have focused on transmission investment within a fixed grid topology. 

That is, no line is built between a pair of nodes that, originally, are not directly connected by 

a line before the investment. The main result from the preceding section is that given a grid 

topology, capacity enhancement that changes the distribution factors introduces an 

externality that may cause the investment in equilibrium to be inefficient. For referral 

convenience, let us call this type I transmission investment. There is no market failure with 

capacity enhancement that does not affect the distribution factors and the investment in 

equilibrium is efficient or optimal. Let us call this type II transmission investment. We can 
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say that type II transmission investment is constrained optimal, in the sense that it is optimal 

given the grid topology. In this section, we will consider the case of grid expansion, in which 

the grid topology itself it also to be determined. And the efficient or optimal allocation in this 

case is, in comparison, fully optimal or socially optimal. Apparently, type I transmission 

investment is usually not fully optimal, since it is not even constrained optimal. So the issue 

of full optimality versus constrained optimality is only relevant to type II transmission 

investment. Then is type II transmission investment optimal when the grid topology is 

endogenous? The answer is no. 

Consider a fixed set of N  nodes. Given a grid topology with the set of existing 

corridors denoted by 1L , the equilibrium allocation 1CE  in the case of type II transmission 

investment is efficient and yields the highest social surplus *
1SS  that can be achieved under 

this very topology. Given a different grid topology with the set of existing corridors denoted 

by 2L , the corresponding equilibrium allocation 2CE  yields the highest social surplus *
2SS  

under this different topology. Generally, *
2

*
1 SSSS ≠ . If *

2
*
1 SSSS > , then 2CE  is not socially 

optimal (although constrained optimal), since there exists at least one other allocation 1CE  

that results in a higher social surplus than does 2CE . Whether 1CE  is socially optimal 

depends on whether the social surplus resulting from it is the highest among all the 

constrained optimal allocations associated with all the possible topologies. If it is, 1CE  will 

be socially optimal. In general, there can be many different grid topologies for a fixed set of 

nodes and each of them has an equilibrium which is optimal under that specific topology. 

Among them, some grid topology and the corresponding competitive equilibrium with type II 

transmission investment amounts to the highest social surplus. That very grid topology and 

the transmission investment in the corresponding equilibrium are fully optimal, while the 

others are only constrained optimal, and not fully optimal. What follows is a numerical 

example, illustrating the difference between constrained and full optimality as well as our 

reasoning above. 

Figure 6 gives three nodes, 1, 2, and 3 and originally there is no transmission line 

between any two of them. Generators 1G  and 2G  are located at node 1 and node 2 and have 
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the cost function ( ) 2
1 20 qqqC +=  and ( ) 2

2 2
110 qqqC += , respectively. The only load of 

1000MW is located at node 3 and there is no generator at that node. Given the three nodes, 

there can be at most three corridors, one between each pair of nodes (denoted in dashed lines). 

There is an investment firm that makes type II transmission investment according to the cost 

function ( ) ( ) 000,000,1
3
1,, 321

2
3

2
2

2
1321 −+++++= IIIIIIIIIC , where nI , for 3,2,1=n  is 

the new capacity built on corridor n. We will ignore contingency constraints in this example. 

Including them can only affect the numerical results and complicate the calculation, but will 

not change anything essential.  

 
Figure 6: Three nodes 

Let us first consider the case when there are two lines, 1 and 2 in the beginning, with 

one between nodes 1 and 3 and the other between nodes 2 and 3. For calculation simplicity, 

assume that the impedance is the same for the two lines and their original capacities are both 

normalized to zero. The investment firm makes investment within this grid topology. A 

competitive equilibrium of this economy consists of a price vector ( )21321 ,,,, ttppp , 

production plans of the generators ( )*
2

*
1 , qq , and an investment plan of the investment firm 

( )*
2

*
1 , II 14. The concrete numbers are shown in Figure 7. As shown earlier, the equilibrium 

allocation is the same as the allocation derived from solving the optimality problem. That is, 

this competitive equilibrium is optimal given the two-line topology. 

                                                 
14 Here we have 0

*
3 =I , since there is no investment between node 1 and node 2.  
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Figure 7: Two-line equilibrium 

There is another equilibrium in which three lines are built. Figure 8 illustrates this 

equilibrium: a price vector ( )321321 ,,,,, tttppp , production plans ( )*
2

*
1 , qq  and an investment 

plan ( )*
3

*
2

*
1 ,, III . Similarly, we can show that this equilibrium is optimal given the three-line 

topology. 

 
Figure 8: Three-line equilibrium 

So the type II transmission investment in both the two-line and three-line equilibria 

above is constrained optimal. The social cost in the equilibrium with two lines is $204,755, 

which is lower than $222,869, the cost in the equilibrium with three lines. This is reasonable, 

since in the two-line equilibrium more electricity is produced by the cheaper generator, 2G . 
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Hence, the three-line equilibrium is not socially optimal. To see if the two-line equilibrium is 

socially optimal, we need to compare it with all the other equilibria. As we can not tell which 

equilibrium the economy will end up with, it is guaranteed that the equilibrium will be 

socially optimal, although it must be constrained optimal. 

From this section and the preceding one, we find that transmission investment that 

does not change the flow structure of the network may not be socially optimal, but is always 

constrained optimal given the grid topology. This result is consistent with our earlier finding 

that transmission investment introduces an externality if its affects the flow of power along 

the lines for any given set of injections. In the case of grid expansion, both type I and type II 

investments change the distribution factors, since the line topology is affected. Therefore, 

there is a market failure whether type I or type II investment is made. Here we do not use the 

derivatives as we do in section 5, because building a line between two nodes that are not 

originally connected causes a jump in the capacity of that line, so differentiation no longer 

applies. However, the cause for the market failure in grid expansion is still the externality 

created by loop flows.  

So far, we have been playing with the model of certainty. In reality, however, there 

can be many uncertain aspects in power and transmission markets. For example, instead of 

being deterministic, the loads or generation technology may vary across different states. To 

consider these facts, we introduce uncertainty to the previous model by allowing for state-

dependent preferences and technology. See Appendix 3. 

2.7 Concluding Remarks 

Market-based transmission investment under perfect competition is not efficient, due 

to the externalities caused by loop flows. However, why and how loop flows create 

externalities is a question that has never been answered. The externalities are associated with 

loop flows, but it is not that externalities are introduced whenever there are loop flows. This 

paper clarifies the nature of loop externalities and points out when loop flows are a problem 

and when they are not. In doing so, we develop a model with endogenized transmission 

investment. From the model, we conclude that transmission investment introduces an 

externality if and only if it affects the flow of power along the lines for a given set of 
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injections. Interestingly these externalities are not like those in the usual sense, in that neither 

the consumers' preferences nor the generators' technologies are directly affected by the 

transmission investment actions. Instead, the externalities come in because transmission 

investment changes the physical aspects of the network, i.e. the way in which electricity is 

transmitted. To illustrate the general model, we analyze two different types of transmission 

investment in two three-node examples, respectively. The first type of investment is building 

new transmission links and the second is introducing additional control capability. We find 

that in a meshed network, transmission investment in lines at a competitive equilibrium is not 

guaranteed to be optimal, while investment in control is. This result is consistent with our 

earlier conclusion. Building new lines results in externalities, because it affects the flow of 

power along the lines for a given set of injections. In contrast, placing control leaves the flow 

structure unchanged, so there is no externality even in the presence of loop flows.  These 

results apply to the case of grid expansion and also hold in an economy with uncertainty. 

Now we can answer the questions raised in the beginning of the paper. The addition 

or removal of lines are not necessary for markets to fail: the competitive equilibrium will not 

be efficient even if the grid topology is restricted to remain the same but upgrades of line 

capacities that change the power flow are allowed. The change in the set of feasible 

injections itself is not responsible for the market failure: as long as the line capacities are 

changed in a flow-preserving way, there will be no externalities associated with the 

investment. Finally, the fact that injections in one bus affect the set of allowable injections in 

other buses is not the source of externalities, either. The truth of the last two statements can 

be seen by observing a two-bus network: in such a network, the flow structure is always the 

same; namely, each MW injected in one bus transits the only line, independently of its 

capacity. In conclusion, the externalities leading to inefficient transmission investment are 

caused by loop flows, but the existence of loop flows does not necessarily result in such 

externalities. It does, only when the transmission investment changes the flows of power 

along the lines for any given of injections. 

Our paper points out an externality that is only found in the power market. There is 

no objection that regulation is needed in transmission expansion planning. However, so far, 

most emphasis has been focused on the regulation necessary to control market power or 
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natural monopoly. Admittedly, these attributes can lead to inefficient transmission 

investment, but this is not a result specific to the power industry. Loop externalities, instead 

are something that is not available in other industries. They are inherent in power markets 

regardless of the market structure, but have never been given attention. Our paper warns that 

even if the power and transmission investment markets were competitive and each market 

participant were forced to price as if it were a price taker, market failure could still occur due 

to the loop externalities we identify. Admittedly, things may be more complicated in 

investment markets with market power, because in that case not only the loop externalities 

but also market power will contribute to inefficient transmission investment. But regulation 

that only mitigates market power is not enough to achieve efficient transmission investment. 

Clearly the loop flow externalities must also be taken into account in defining property rights 

and creating incentives for efficient transmission investment and in devising regulation 

schemes to achieve second-best results. 

The model in this paper is static and everything takes place one-shot. The investment 

firms make transmission investment and have the costs recovered immediately and once. In 

reality, a transmission investment project usually takes a relatively long time to be completed; 

the built facilities are used for many periods afterwards and the investment cost is recovered 

period by period, instead of all at once; there may be entry or exit of market participants in 

the long run; and the grid may evolve gradually with transmission investment. Although 

these attributes are not reflected in our model here, it does address the externalities created by 

loop flows that also exist in a dynamic scenario. In future we can develop a dynamic model, 

but the inclusion of the dynamic attributes should not change the result that transmission 

investment introduces an externality if it affects the flow structure of the network. The 

externalities associated with loop flows will always be there, whether we do static or 

dynamic modeling. A meaningful and important extension of our current work will be to see 

how efficient transmission investment can be achieved through proper market design that 

addresses those externalities.  
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2.9 Appendices 

Appendix 1: Derivation of equation (1) 
The voltage at bus i is a sinusoid waveform whose instantaneous value at time t is 

( ) ( )iii tVtv θω += sin  

where iV  is the magnitude (amplitude) of the sinusoid waveform, 602 ×= πω  is the 

frequency of the waveform in radians per second and iθ  is its phase angle. Given the 

impedances ijZ , the real power flow over the line from i to j is given by 

( )
ij

jiji
ji Z

VV
f

θθ −
=→

sin
                                               (72) 

measured in MW. ix , the net power injection at bus i is the sum of the flows jif →  over all 

Nj ,...,1= : 

( )
∑∑
==

→ =∀
−

==
N

j ij

jiji
N

j
jii Ni

Z
VV

fx
11

,...,1 ,
sin θθ

                         (73) 

Assume that the voltage magnitude iV  at bus i is constant. Without loss of generality, we can 

set 1≡iV  for all Ni ,...,1= . Then (72) and (73) become: 
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( )
Nji

Z
f

ij

ji
ji ,...,1, ,

sin
=∀

−
=→

θθ
                                         (74) 

( )
∑
=

=∀
−

=
N

j ij

ji
i Ni

Z
x

1

,...,1 ,
sin θθ

                                            (75) 

Equations in (75) are the “real power flow equations”. Only N-1 of these equations are 

independent, since 0
1

≡∑
=

N

i
ix  in a lossless system. Besides, what matters are the phase angle 

difference, rather than the angles themselves. Thus, we can set 0≡Nθ  and eliminate the Nth 

equation in (75). Node N can then be regarded as the reference node in the network15. Now 

we have N-1 equations with N-1 unknowns, 11 ,..., −Nθθ . Given the net power injections 

11 ,..., −Nxx , we can solve for the phase angles ( )11
* ,..., −= Nii xxθθ , 1,...,1 −= Ni  and obtain 

the flow on each line by (74).  

Now we make one more simplifying assumption: the phase angle differences, 

|| ji θθ − , are very small. Then the following approximation holds: jiji θθθθ −≈− )sin( . As 

a result, equations (74) and (75) all become linear, and the solutions *
1

*
1 ,..., −Nθθ  are linear in 

the net injections. That is, 

( ) ( )

∑
−

=

−−

→

=∀=

−
=

−
=

1

1

1111

**

,...,1, ,        

,...,,...,
        

N

n
n

ij
n

ij

NjNi

ij

ji
ji

Njix

Z
xxxx

Z
f

α

θθ

θθ

 

where ij
nα  are functions of ijZ . Since ijZ  are constant for a fixed grid, so are ij

nα . 

 

                                                 
15 The reference node refers to the node with the phase angle 0. In determining the distribution factors or calculating flows, 
the reference node can be treated as if it were the only withdrawal node and all the others were injection nodes in the 
network. 
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Appendix 2: Proof of the ad valorem tax rate of ( ) ( )*
2

*
1

*

qq
I
I

−
∂

∂α  being the 

second best 
Suppose that the government imposes an ad valorem tax τ  on the capacity 

enhancement of corridor 3. Then the investment firm’s profit maximization problem becomes 

( ) ( )ICIt
I

−−
≥

τ1max
0

 

which has the FOC 

( ) ( )t
I
IC

−=
∂

∂ 1
*

τ  

And the other conditions that a competitive equilibrium should satisfy are 

( )
2,1  ,

*

==
∂

∂
np

q
qC

n
n

nn  

Dqq =+ *
2

*
1  

( )( ) *
0

*
2

*
1

* IkqqI +=−α  

( )tIpp *
13 α+=  

( )tIpp *
23 α−=                                

By comparison, we can see that if an allocation ( )( )**
2

*
1 ,, Iqq  solves the social optimum 

problem (24) with associated Lagrangian multipliers ( )μλ, , then the same allocation 

( )( )**
2

*
1 ,, Iqq  together with a price vector ( )tppp ,,, 321  and an ad valorem tax rate τ  

defined by 

( )μαλ *
1 kp −=  

( )μαλ *
2 kp +=  

λ=3p  

μ=t  

( )( )*
2

*
1

*

qq
I
I

−
∂

∂
=

ατ  
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is a competitive equilibrium. Conversely, if an allocation ( )( )**
2

*
1 ,, Iqq  together with a 

price vector ( )tppp ,,, 321  and an ad valorem tax rate ( )( )*
2

*
1

*

qq
I
I

−
∂

∂
=

ατ  constitute a 

competitive equilibrium, then the same allocation ( )( )**
2

*
1 ,, Iqq  together with the 

Lagrangian multipliers ( )μλ,  defined by 

t
p

=
=

μ
λ 3  

solve the social optimum problem (24). So, we can achieve efficiency by imposing the 

ad valorem tax ( )( )*
2

*
1

*

qq
I
I

−
∂

∂
=

ατ  on the transmission investment. 

 

Appendix 3: Transmission investment under uncertainty 

(1) Model specification and assumptions 

There are two commodities in the economy, namely power and the numeraire. The 

settings and nomenclature about the grid are the same as before. Still assume that only one 

consumer and one generator are attached to each node. All the existing lines of the network 

are owned by a single TO. Different from before, there are two periods, 1,0=t and two states 

of the world, OHPHs ,= . We may think of states PH and OH as the peak hour and off-peak 

hour, respectively. Let PHπ  and OHπ  be the probability that state PH and state OH occurs, 

respectively, such that 1=+ OHPH ππ . The true state is revealed in period 1. 

Consumers have different endowments and utility functions in different states. 

Specifically, in state s, consumer n is endowed with a fixed amount of the numeraire s
nω  and 

a quasi-linear utility function RRRu s
n →× +:  such that 

( ) ( ) OHPHsNncmcmu s
n

s
n

s
n

s
n

s
n

s
n ,,,...,1 , ==∀+=+ φ  

where 0≥s
nc , and Rms

n ∈  denote the consumer’s consumption of power and the numeraire, 

respectively in state s. ( )s
n

s
n cφ  is assumed to be bounded above with 

( )
0>

∂
∂
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n

s
n

s
n

c
cφ

, 
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( )
( )

02

2

<
∂

∂
s
n

s
n

s
n

c

cφ
, and ( ) 00 =s

nφ . So the total amount of the numeraire available in the economy 

in state s is 

OHPHs
N

n

s
ns , ,

1
== ∑

=

ωϖ  

Generators’ technologies also depend on the state. In state s, generator n has a 

production set given by 

( ) ( ){ } OHPHsNnqCzqqzY s
n

s
n

s
n

s
n

s
n

s
n

s
n ,,,...,1 , and 0:, ==≥≥−=  

where ( )s
n

s
n qC  is the generator’s cost function in state s, measured in the numeraire in the 

same state. Assume that ( )s
n

s
n qC  is twice differentiable with 

( )
0>

∂
∂

s
n

s
n

s
n

q
qC

, 
( )

( )
02

2

>
∂

∂
s
n

s
n

s
n

q

qC
, and 

( ) 00 =s
nC . 

There is a set E of investment firms indexed by Er ∈ . They make investment 

decisions in period 0, before the true state is revealed. Therefore, no matter which state 

occurs in period 1, investment firms have to produce with the same technology given in (3) 

in section 3 and the investment levels are independent of the state. Still let rI l  be the new 

transmission capacity on corridor ℓ built by investment firm r, then the total investment on 

that corridor is ∑
∈

=
Er

rII ll . As the investment affects the distribution factors, they can be 

expressed as ( )( )Lvvn I ∈
lα .  

(2) Efficient allocation 

Like before, an allocation consists of each consumer's consumption plan, each 

generator's production plan and each investment firm's investment plan. The difference is that 

under uncertainty, the consumption and production plans depend on the true state of world. 

The investment plan, which is carried out before the true state is revealed, is state 

independent. Now an efficient allocation in this economy with uncertainty can defined as 

follows: 
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Definition 4: A feasible allocation ( ) ( )( ) ( )( )( )ErL
rr

OHPHs
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n
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n
s
n

s
n Izqzcm

∈∈=== −−
ll,,,,, ,11  in this 

economy is a specification of a consumption bundle ( ) +×∈ RRcm s
n

s
n ,  for each consumer 

Nn ,...,1=  in each state OHPHs ,= , a production plan ( ) s
n

s
n

s
n Yqz ∈− ,  for each generator 

Nn ,...,1=  in each state OHPHs ,= , and an investment plan ( )( ) rrr YIz ∈− l,  for each 

investment firm Er ∈ , such that 

∑ ∑∑
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=++
N

n Er
s
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s
n zzm
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ϖ                                                            (52) 
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1

0   ,
N
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s
nLvvn LIkcqI lll

lα                                     (54) 

for OHPHs ,= .  

Condition (52) requires the equality between the total amount of the numeraire for 

consumption, production and investment and the amount of the numeraire available in the 

economy in each state. Condition (53) dictates that the total electricity generation should 

satisfy the total demand in each state. Condition (54) requires that in each state the flow 

along every line must not exceed its capacity limit. Comparing these conditions with 

conditions (5)-(7), we can see that the conditions under uncertainty are nothing more than the 

conditions under certainty applied to different states, since now everything except the 

transmission investment is state-contingent. 

Among the feasible allocations, those that cannot be improved upon are efficient 

allocations, defined in the following: 

Definition 5: A feasible allocation ( ) ( )( ) ( )( )( )ErL
rr

OHPHs
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n
s
n

s
n

N

n
s
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n Izqzcm

∈∈=== −−
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** ,,,,,  is 

efficient (or optimal) if there is no alternative feasible allocation 
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s
ns ,...,1 ,,,

,

**

,
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==

ππ  with strict inequality for at least one 

agent n. 
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According to the definition, no other feasible allocation can make an agent better-off 

than the efficient allocation without hurting the other agents. Under uncertainty, the agent's 

welfare is measured by the expected utility. Formally, an efficient allocation 

( ) ( )( ) ( )( )( )ErL
rr
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N
n

s
n

s
n

N
n

s
n

s
n Izqzcm

∈∈=== −−
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** ,,,,,  solves the following problem: 
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        (55) 
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nLvvn LIkcqI lll

lα , OHPHs ,=  

Assume that ( )⋅l
nα  are convex to guarantee convexity of the set of feasible allocations. Let 

( )( ) OHPHsL
s

s ,, =∈llμλ  be the Lagragian multipliers of the constraints above, respectively. Then 

the FOCs for an efficient allocation are 
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for OHPHs ,= , and where 
( )( )( )∑ ∑ ∑

= =

−

=

∈ −
∂

∂
=

OHPHs

L

z

N

n

s
n

s
n

Lvv
z
ns

z cq
I
I

B
, 1

1

1

**
*

l

α
μ . Essentially, the 

FOCs here are analogous to the FOCs for the social optimum problem under certainty (8), 

applied to each of the two states.  

The last two equations above are the feasibility conditions: aggregate power 

generation should be equal to the aggregate power consumption, and the line flows induced 

by the dispatch should satisfy the corresponding capacity constraints. The multipliers s
lμ , for 

L∈l  and OHPHs ,=  are the marginal social benefit in state s from one more MW increase 

in the capacity of line l , or alternatively, the marginal social cost in state s of reducing the 

capacity on line l  by one MW. This social benefit can be positive only when the flow 

constraint is binding in that state at the efficient allocation. The multiplier sλ  is the marginal 

social benefit in state s of one more MW consumed at the reference node N, or equivalently 

the marginal social cost in state s of one more MW produced at node N. 

The first two sets of conditions necessitate that in each state, for 0* >s
nc , the private 

benefit from one more unit of power supplied at node n be equal to the social cost of 

supplying it at that node. This social cost, ( )( )∑
∈

∈−
L

Lvvn
s

s I
l

l
l

*μμλ  is equal to the social cost of 

supplying an additional MW at the residual node, sλ  plus the social cost of transmitting the 

one MW to node n, ( )( )∑
∈

∈−
L

Lvvn
s I

l

l
l

*μμ .  

The second two sets of equations state that the private cost of generation of one MW 

at each node n in state s should equal the social cost of generating an additional MW at that 

node in that state, unless 0* =s
nq , in which case the private cost can be greater than the social 

cost, which is ( )( )∑
∈

∈−
L

Lvvn
s

s I
l

l
l

*μμλ .  

Lastly, equations in (57) require that the marginal private cost of the investment on 

the capacity of line l  be equal to the social benefit of that investment. The social benefit 

consists of two parts. One is the social benefit of the increased capacity of the line, ∑
= OHPHs

s

,
lμ , 

which is equal to the sum of the social benefit in each state. The second part B is the social 
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cost for both states incurred by the change in the distribution factors due to the investment on 

line l .  

(3) Arrow-Debreu equilibrium 

In this part, we will see what the decentralized outcome of this economy will be. 

Before defining the market equilibrium, let us introduce the concept of (state) contingent 

commodities. For every physical commodity Gg ,...,1=  and state Ss ,...,1= , a unit of (state) 

contingency commodity sg  is a title to receive a unit of the good g iff state s occurs. So the 

number of contingent commodities is G×S, the number of physical commodities times the 

number of states. In our model, we postulate the existence of a competitive market for each 

contingent commodity, namely power at each node, transmission on each line and the 

numeraire, in each state. These markets open before the resolution of uncertainty, that is, at 

t=0 and are for delivery of goods at t=1 (they are commonly called forward markets). For 

each state OHPHs ,= , there will be electricity prices s
np  associated with each node, 

transmission price stl  on each corridor and the numeraire price sw . In the model without 

uncertainty, the price of the numeraire is normalized to unity. Here, with uncertainty, the 

price of the numeraire is contingent on the state and not necessarily the same in both states. 

So, we can not simply normalize the numeraire price in each state to unity. In this economy, 

there is ex ante trade only, and no ex post trade. What is being purchased (or sold) in the 

market for a contingent commodity is commitments to receive (or to deliver) amounts of that 

physical good, if, and when, state s occurs. In period t = 1, a state s is revealed, contracts are 

executed, and every consumer receives a consumption bundle. Observe that although 

deliveries are contingent, the payments are not. Notice also that for the markets to be well 

defined it is indispensable that all economic agents be able to recognize the occurrence of 

state s. That is, information should be symmetric across economic agents. So we assume that 

the probability sπ is common knowledge. 

In each state, each generator decides how much electricity to produce in response to 

its own nodal price and each consumer decides how much electricity to consume in response 

to her own nodal price. Given all the nodal prices and transmission prices in both states, the 

investment firms, before knowing the true state, choose how much extra capacity to build 
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through transmission investment. Like before, the generators, investment firms and TO are 

owned by the consumers. Then the market equilibrium of this economy with uncertainty can 

be defined as follows. 

Definition 6: An allocation ( ) ( )( ) ( )( )( )ErL
rr
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constitute an Arrow-Debreu equilibrium if: 
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2. Investment firms’ profit maximization: For each investment firm Er ∈ , 
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3. Utility maximization: For each consumer Nn ,...,1= , ( ) OHPHs
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4. No arbitrage: for any dispatch ( ) OHPHs
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5. Market clearing: For each state OHPHs ,=  
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Note that at any production or investment plan, the profit of a generator or of an 

investment firm is a nonrandom amount of dollars, as in conditions 1 and 2 above. This is 

because in the Arrow-Debreu framework, although productions and deliveries of goods 

depend on the state of the world, the firm is active in all the contingent markets and manages 

to insure completely. 

Now let us characterize the five conditions in the definition above. Condition 1 says 

that each generator maximizes its total profit across the two states, given its own technology 

and nodal price: formally, it chooses *s
nq , for OHPHs ,=  to solve 
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The necessary and sufficient conditions for *s
nq  to solve the problem are 
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According to condition 2, each investment firm maximizes its profit, taking its own 

technology and the transmission price on each line as given: it chooses ( )**
1 ,..., r

L
r II  so as to 
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The corresponding necessary and sufficient conditions are: 
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In condition 3, each consumer maximizes her expected utility within the budget 

constraint, given the nodal price of her own node: she solves the following problem 

( )
( )( )∑

==∀
×∈

+
+ OHPHs

s
n

s
n

s
ns

OHPHs
RRcm

cm
s
n

s
n ,,

,,
max φπ  



www.manaraa.com

 

 

60
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where the right-hand side of the constraint is consumer n’s total wealth across the two states. 

The necessary and sufficient conditions for a utility maximizing consumption bundle are 

OHPHswsns , ,0 ==−ηπ                                                                         (62) 
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where nη  is the Lagrangian multiplier of the consumer’s budget constraint. From equations 

(62) we have 
OH

PH

OH

PH

w
w

=
π
π . Since only the relative prices matter in deriving the equilibrium, 

we can let PHPHw π=  and OHOHw π= . Then 1=nη  and (63) become 

( ) OHPHsNncpc
c

s
n

s
n

s
ns

n

s
n

s ,,,...,1,0 ifequality  with , ** ==∀>≤
∂
∂φ

π          (64) 

Besides, (60) and (61) can be rewritten as follows, respectively 
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We can infer from Section 3 that a necessary and sufficient condition for the no-

arbitrage condition to hold is that in each state the price at the residual node N must be equal 

to the nodal price at each node n=1,...,N plus the transmission charge for transmitting one 

unit of power from node n to node N. Formally, conditions (58) are equivalent to  

( )( ) OHPHsNnItpp
L

Lvvn
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∈
∈

l

l
lα                      (67) 

The proof of necessity and sufficiency is similar to that in Subsection 3.5 and will not be 

repeated here.  

The last condition in the definition states that at the equilibrium prices, supply equals 

demand for the numeraire, power and transmission, respectively. 
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In summary, the necessary and sufficient conditions for allocation 
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At an Arrow-Debreu equilibrium all trade takes place simultaneously and before the 

uncertainty is resolved. In reality, trade takes place to a large extent sequentially over time, 

and frequently as a consequence of information disclosures. Mas-Colell, Whinston and Green 

(1995) have shown that Arrow-Debreu equilibria can be reinterpreted by means of trading 

processes that actually unfold through time. In this paper, we only adopt the Arrow-Debreu 

framework and do not consider sequential trading, but the result should be the same. 

(4) Comparison between Arrow-Debreu equilibrium and efficient allocation 

Now we want to answer these questions for the scenario with uncertainty: is the 

Arrow-Debreu equilibrium efficient or can the efficient allocation be decentralized? To be 

more specific, is the transmission investment level in equilibrium socially optimal? If not, 

what causes the problem? Recall that for the economy without uncertainty, the market 

equilibrium is not necessarily efficient, due to the externalities created by loop flows. 

Intuitively, this result should still hold here, since the inclusion of uncertainty does not 
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change the fact that transmission investment may affect the flow of power along the lines for 

any given set of injections. 

We observe that if for each two lines L∈',ll , and for each node Nn∈ , investment 

in line l  does not affect the distribution factor 'l
nα , that is, if 

( )( )
0

*

=
∂

∂ ∈

lI
I Lvv

z
nα

, then every 

efficient allocation can be decentralized by competitive prices, and the allocation in every 

Arrow-Debreu equilibrium is efficient. We can see that if an allocation 

( )( ) ( )( )( )ErL
r

OHPHs

N

n
s
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n Iqc

∈∈== ll
*

,1
** ,,  together with the Lagrangian multipliers sλ  and s

lμ  for 

L∈l  and OHPHs ,=  solve the social optimum problem (55), then s
s
Np λ= , 

∑
∈

−=
L

n
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s
s
np

l

l
lαμλ  for Nn ,...,1=  and OHPHs ,= , and sst ll μ= , for L∈l  and 

OHPHs ,=  are the nodal and transmission prices that support the corresponding efficient 

allocation. Conversely, if ( ) ( ) ( )( ) OHPHsL
sN

n
s
ns tpwtpw ,1 ,,,,

=∈==
ll  are prices that together with 

( )( ) ( )( )( )ErL
r

OHPHs

N

n
s
n

s
n Iqc

∈∈== ll
*

,1
** ,,  constitute a competitive equilibrium, then s

Ns p=λ , and 

ss tll =μ  together with ( )( ) ( )( )( )ErL
r

OHPHs

N

n
s
n

s
n Iqc

∈∈== ll
*

,1
** ,,  are a solution to the social optimum 

problem (55). 

However, in general the distribution factors are affected by investment in different 

lines. Hence the flow structure of the network is changed after the investment, as indicated 

by the term 
( )( )( )∑ ∑ ∑

= =
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=

∈ −
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∂
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B
, 1

1

1

**
*

l

α
μ . This is the externality that causes the 

competitive allocations to be inefficient and the result that efficient allocations cannot be 

decentralized by means of competitive prices. So, we end up with the same conclusion as that 

from the model without uncertainty: the externality that causes market failure in the 

transmission investment market comes from the dependence of the distribution factors on 

investment. This externality exists as along as the investment affects the flow of power along 

the lines for a given set of injections. Obviously, the introduction of uncertainty does not 

change the basic result. Similarly, we can restore efficiency by imposing a unit tax of 
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on investment in line l  in state s for L∈l  and OHPHs ,= .  

Like before, we can extend this model with uncertainty to incorporate the case of grid 

expansion. The results should be the same.  
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CHAPTER 3.  TRANSMISSION INVESTMENT COST 
ALLOCATION WITHIN THE COOPERATIVE GAME 

FRAMEWORK 

3.1  Introduction 

In recent decades, the electricity market in the U.S. as well as in many other countries 

has experienced an unprecedented institution restructuring from heavy regulation to 

competition. The subject of transmission expansion is important and recognized as a complex 

problem in electricity restructuring (Hogan 2003). One of the major concerns is how 

transmission investment costs should be allocated. Due to economies of scale and network 

effects, there may be situations where many would benefit from a transmission expansion but 

no coalition is prepared to make the investment. In this case, a regulatory decision to approve 

the investment and allocate the costs is required. If no coalition of grid users were able to 

agree to pay for a grid expansion that appears to be beneficial for the system as a whole, any 

interested party could propose a project and an allocation of its costs among those grid users 

who would benefit (Hogan 1999). This paper gives some cost allocation options, motivated 

by cooperative games.   

Cooperative game theory arises as a most convenient tool to solve cost allocation 

problems and its application to the electricity industry has been growing in the literature. 

Contreras, Klusch and Yen (1998) and Contreras and Wu (2000) proposed a decentralized 

coalition formation and cost allocation procedure for transmission expansion planning, using 

the bilateral Shapley value and kernel, respectively. Zolezzi and Rudnick (2002) developed a 

new allocation method among the electric market participants, which is based mainly on the 

responsibility of the agents in the physical and economic use of the network, their rational 

behavior, the formation of coalitions, and cooperative game theory resolution mechanisms. 

Following that, Zolezzsi and Rudnick (2003) presented a transmission cost allocation method, 

based on cooperative game theory and transmission network capacity use by consumers.  

Different than previous work, this paper identifies the situation in which socially 

worthwhile transmission investment may not benefit every agent and applies cooperative 
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game theory to the allocation of transmission investment costs, which, as mentioned earlier, 

is of high significance and broad interest. We choose the cooperative game theory framework, 

because its solution mechanisms behave well in terms of fairness, efficiency and stability, 

qualities required for the correct allocation of transmission investment costs. Basically, the 

problem of transmission investment cost allocation can be formulated to a cooperative game. 

Then the well-known game theoretic solution concepts, such as the Shapley value, core and 

nucleolus can be used to solve the associated game. From these solutions, we can derive the 

allocation rules for the original cost allocation problem. We consider the bid-based, security-

constrained economic dispatch system, which is now widely practiced in different regions in 

the U.S. 

The rest of this chapter is organized as follows. We start, in Section 3.2, with an 

example with a simple three-bus electricity transmission network, from which one can see 

how the bid-based, security-constrained system works and how comes the investment cost 

allocation problem. Section 3.3 defines the general electricity cost allocation problem and 

allocation rule. Two cost allocation rules are provided in Section 3.4, based on two important 

cooperative game theoretic solution concepts, namely the Shapley Value, and core, 

respectively. In Section 3.5, we give the relationship between the electricity cost allocation 

problem and the bankruptcy problem and propose a third allocation rule, using the concept of 

nucleolus. The last section is a brief summary of earlier conclusions and suggests potential 

research extensions. 

3.2  A Three-bus Example 

Let us start from an example with a three-bus transmission network as illustrated in 

Fig. 1. We focus on the day-ahead market corresponding to the specified hour h and suppress 

the hour h in our notation. The basic setting is as follows: The network consists of three 

interconnected nodes. The impedance is the same for all the three lines. For simplicity, 

assume that only the line connecting nodes 1 and 3 is constrained to carry no more than 200 

MW. The other two lines, in contrast, have extremely large capacities that they are never 

congested. Besides, assume that there is no voltage or thermal loss during the transmission. 

At each of the three nodes, there is a generator (or seller) that produces and sells electricity 
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and a consumer (or buyer) that buys and consumes electricity16. We use nS  for the seller and 

nB  for the buyer, at node n, for 3,2,1=n . This transmission system is operated and 

supervised by an independent system operator (ISO).  

 
Figure 1: A three-bus network 

Without loss of generality, we assume that the ISO is also the transmission owner 

(TO) of the transmission grid. The sellers and buyers in the market submit to the ISO sealed 

offers and bids, respectively, describing the price and quantity at which they are willing to 

sell or buy energy. The ISO determines the successful offers and bids and the market-

clearing price by maximizing the social surplus, allowing for the physical constraints. The 

auction results determine the unit commitment and dispatch of the physical units. The offers 

submitted by the three sellers are illustrated in Figures 2-4, respectively.  

The supply curve in Figure 2 means that the seller at node 1 can produce up to 300 

MWh at a cost of $5 per MWh and another 300 MWh at a cost of $10. Similar interpretations 

apply to the other two supply curves. Figures 5-7 describe the bids of the three consumers, 

respectively: 

 

                                                 
16 By the consumer, we actually mean any entity that purchases electricity from the system, such as the load serving entity 
(LSE). 
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Figure 2: S1 

 
Figure 3: S2 

 
Figure 4: S3 
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Figure 5: B1 

 
Figure 6: B2 

 
Figure 7: B3 
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For example, the demand curve in Figure 5 tells that buyer 1 is willing to pay $70 per 

MWh for up to 200 MWh and $50 per MWh for 100 more MWh. The other two demand 

curves can be interpreted in a similar way. The ISO maximizes the social surplus, given these 

offers and bids and the non-negativity, balancing and transmission constraints. In what 

follows, we consider both the unconstrained and constrained case. 

3.2.1 Unconstrained Case 

If there were no transmission constraint, the ISO solved the following problem 

∑ ∑
= ==∀

≥≥
−

N

n

N

n
nnnn

Nn
cq

qCcU
nn 1 1,...,1

0,0
)()(max  

s.t. ∑ ∑
= =

=
N

n

N

n
nn qc

1 1

 (supply-demand balance) 

where )( nn cU is buyer n’s benefit or utility from consuming nc  amount of power and 

)( nn qC is seller n’s cost of generating nq  amount of power. Thus, the maximand 

∑ ∑
= =

−
N

n

N

n
nnnn qCcU

1 1

)()(  is the social surplus, namely the difference between the social benefit 

and the social cost. The social surplus is maximized subject to the non-negativity and 

balancing constraints. Solving this problem for the three-bus example previously, we get the 

following generation and consumption quantities (in MWh):  

800,400,300,300,600,600 321321 ====== cccqqq  

The market clearing price is 29$/MW, which is the same at all busses. This price can 

be derived as the Lagrangian multiplier of the supply-demand balancing constraint. The 

social welfare is 600,265=ucSW (in $), in which the producer surpluses (or profits) for 

sellers 1, 2 and 3 are (in $): 900,12,1 =ucPS , 400,7,2 =ucPS  and 800,1,3 =ucPS , respectively 

and the consumer surpluses for buyers 1, 2 and 3 are (in $) : 400,16,300,10 ,2,1 == ucuc CSCS , 

and 800,216,3 =ucCS , respectively.  
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3.2.2 Constrained Case 

Now there is a flow constraint on line 1-3, i.e. the flow along this line can not exceed 

200 MW. Under the unconstrained transmission dispatch, the power flow on Line 1-3 is 

266.67 MW, which violates the transmission constraint. Therefore, the dispatch described in 

3.2.2 is not feasible in reality and the ISO has to take the line constraint into account when 

solving for the optimal dispatch. Therefore, the ISO solves the following problem:  

∑ ∑
= ==∀

≥≥
−

N

n

N

n
nnnn

Nn
cq

qCcU
nn 1 1,...,1

0,0
)()(max  

s.t. ∑ ∑
= =

=
N

n

N

n
nn qc

1 1

  

ll kccqqf NN ≤),...,;,...,( 11 , ∀ line L∈l  

Solving this new problem for our three-bus example, we get the quantities in the 

constrained case: 

800,400,300,450,500,550 321321 ====== cccqqq  

The constraint on line 1-3 is binding. In other words, line 1-3 is congested, which 

leads to different locational marginal prices (LMPs) at different nodes17. Specifically, the 

LMPs at node 1, 2 and 3 are 10, 20 and 30 (in $/MW), respectively18. Note that electricity at 

each node is bought and sold at the LMP of that node. Therefore, sellers 1 and 2 receive $10 

and $20, respectively for each MWh sold, and buyer 3 has to pay $30 for each MWh power 

consumed, regardless of where the power comes from. As a result, the total amount paid by 

the consumers exceeds the total amount received by the sellers. The difference between these 

two amounts is known as the congestion rent (denoted by K), collected by the ISO. In this 

case, the social welfare is divided into three components: consumer surpluses, producer 

surpluses and congestion rent, which take the following values (in $):  

                                                 
17 The LMP at any location is the incremental cost of serving one more increment (1 MW) of load at each location, given the 
actual dispatch, the constraints, and the participants’ offers/bids 
18 Let λ and μ  be the Lagrangian multiplier of balancing and flow constraint, respectively. Then the LMP at node 3 is equal 
to λ and the LMPs at node 1 and 3 are 3/2μλ −  and 3/μλ − , respectively. 
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000,6
000,216,000,20,000,16

250,2,000,2,500,1

,3,2,1

,3,2,1

=

===

===

K
CSCSCS

PSPSPS

ccc

ccc

 

Adding them up, we have that the social surplus in the constrained case (SWc) is $263,750, 

which is $1850 less than that in the unconstrained case. It means that the social surplus will 

increase by $1850 if the constraint is eliminated19. So, if the cost of eliminating the constraint 

is lower than $1,850, it is socially worthwhile to make the transmission investment that 

removes the constraint.  

The agents will benefit or suffer differently from the investment, although it might be 

good for society as a whole. From now on, we will change the indices for notational 

simplicity: 1— 1S , 2— 2S , 3— 3S , 4— 1B , 5— 2B , 6— 3B , and 7—ISO. Let iπ , for 7,...,1=i  

be the change in agent i’s welfare from the constrained to the unconstrained case. Then we 

have (in $): 

114001 =π , 54002 =π , 4503 −=π , 57004 −=π , 36005 −=π , 8006 =π , 60007 −=π  

These numbers say that if the constraint on line 1-3 is eliminated through 

transmission investment, sellers 1 and 2 and buyer 3 will be better off, while the other four 

agents, worse off. This three node example can be generalized to one with a larger, more 

complicated set of nodes and more agents. An investment project that enhances transmission 

capacity of the network may benefit society as a whole, but not every agent. Then a series of 

questions ensure. Who should make the beneficial investment? How should the investment 

cost be allocated? Intuitively, the beneficiaries should finance the investment and compensate 

the sufferers for their loss. In the following sections, we will formulate the situation into a 

cost allocation problem and characterize its allocation rules. 

3.3  Electricity Cost Allocation Problem and Allocation Rule 

For a given transmission network and a set { }nN ,...,2,1= of agents, we can define the 

problem of sharing or allocating transmission investment costs as follows: 

Definition 1: An electricity cost allocation problem is a pair ),( πC , where 

                                                 
19 Here we ignore the effect of capacity enhancement in line 1-3 has on the impedance of that line, nor the distribution 
factors of the network. Hence, the line impedances and distribution factors remain the same before and after the investment.  
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( ) n
n R∈= ππππ ,...,, 21  and ∑

=

≤≤
n

i
iC

1

0 π . 

Here C is the cost of the transmission investment project and iπ , for ni ,...,1=  is agent i’s 

benefit from the investment. Note that iπ can be negative, meaning that agent i will suffer, 

rather than benefit from the investment.  

An allocation in the problem ),( πC is a vector ( )nxxx ,...,1= , such that Cx
n

i
i =∑

=1
. 

The value ix is interpreted as agent i’s contribution to the financing of the cost C. An 

allocation is said to be individually rational if ( )nx ππ ,...,1≤ . The requirement iix π≤  for 

ni ,...,1=  means that if agent i benefits from the investment, her contribution should be no 

greater than her benefit; if she suffers from the investment, she has to be compensated for her 

loss. Given an allocation x, the corresponding vector of net benefit is x−π .  

Our task is to find reasonable cost allocations. Specifically, we are interested in 

reasonable allocation rules that associate an allocation to each electricity cost allocation 

problem.  

Definition 2: An allocation rule is a function f that maps each electricity cost allocation 

problem ),( πC to one or a set of its allocations. 

That is, given an electricity cost allocation problem, our rule should tell us how much each 

agent will end up paying. One of the possible rules can be the following:  

Example: The Head Tax Rule is the rule that maps each allocation problem ),( πC  to the 

allocation hta ),( πC = x where { }iix πλ,min= , ni ,...,1=∀ and 0≥λ is chosen such 

that Cx
n

i
i =∑

=1

. This allocation rule dictates that those whose welfare will be hurt by the 

investment should be fully compensated for their losses ( iix π= , if 0<iπ ), and those who 

will be better-off after the investment should contribute an equal amountλ to its financing, as 

long as no one pays more than her benefit, in which case she pays her full benefit. 

For the purpose of finding allocation rules, we will translate the electricity cost 

allocation problem into a cooperative game with transferable utility and then apply the well-

known game-theoretic solution concepts to the game to get allocation rules for the original 
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problem.  

Definition 3: A cooperative game (or a game in coalitional form) consists of  

1. a set N (the players), and 

2. a function Rv N →2: , such that ( ) 0=φv }):{2( NSSN ⊆= . 

A subset S of N is called a coalition, and v(S) is called the worth of the coalition S. Intuitively, 

v(S) represents the total amount of payoff that the coalition S can get by itself, without the 

help of the other players. For the electricity cost allocation scenario, we assume that each 

coalition can carry out the investment project as long as it pays the investment cost and 

compensates all the agents that will suffer from the project. The idea is that each sufferer has 

the veto power, unless she is fully compensated for her loss. Now we can formulate the 

cooperative game from the electricity cost allocation problem.  

Definition 4: Let ),( πC be an electricity cost allocation problem defined in Definition 1. The 

associated cooperative game is (N, v), where  

1. { }nN ,...,1=  is the set of players, and 

2. v(S) = }},0min{,0max{ ∑ ∑
∈ ∉

+−
Si Si

ii C ππ ,  NS ⊆∀ .                                                      

Condition 2 above means that a coalition S can always remain in the status quo, and hence 

get 0, or undertake the transmission investment after compensating the agents outside the 

coalition for the losses they might suffer.  

A payoff vector of the game is a vector ( )nyyy ,...,1=  with the element iy  

representing the payoff to player i or equivalently what player i will finally get. It will be 

recalled that the set of imputations of a cooperative game (N, v) is the set of payoff vectors y, 

such that 0≥y and∑
∈

=
Ni

i Nvy )( . Since },0max{)( ∑
∈

−=
Ni

i CNv π in our game, its set of 

imputations is the set of vectors 0≥y , such that ∑ ∑
∈ ∈

−=
Ni Ni

ii Cy },0max{ π . Every imputation 

y of the game (N, v) induces a cost allocation for the electricity cost allocation 

problem ),( πC in the way that yx −= π . 

Having the definitions above, we can apply some accepted game theoretic solution 

concepts to the game induced by the cost allocation problem and obtain the corresponding 
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cost allocations. Solution concepts associate payoff vectors with games. In many cases a 

solution concept associates several payoff vectors with a given game or none at all. 

3.4  Allocation Rules Based on the Shapley Value and Core 

In this section, we will find the allocation rules, using two game theoretic solution 

concepts, namely the Shapley value and the core. The former is single-valued and associates 

a unique payoff vector with each cooperative game. Let us first recall the definition of the 

Shapley value.  

Definition 5: Let },...,2,1{ nN = and GN be the set of all games whose player set is N. The 

Shapley value or value on N is a function NN RG →:φ  that satisfies the following 

conditions: 

1. (Symmetry condition): if i and j are substitutes20 in v, then ji vv )()( φφ = . 

2. (Null player21 condition): if i is a null player, then 0)( =ivφ . 

3. (Efficiency condition): ∑
=

=
n

i
i Nvv

1
)()(φ . 

4. (Additivity condition): iii wvwv )()())(( φφφ +=+ . 

iv)(φ , the i-th coordinate of the image vector )(vφ  is interpreted as the “power” of player i in 

the game v, or what it is worth to i to participate in the game. The four conditions that the 

Shapely value must satisfy are quite intuitive. Condition 1 necessitates that if two players 

have equal influence on any coalition without either of them originally, their payoff should 

be the same. Naturally, a player that has no influence at all should get nothing, which is what 

Condition 2 means. The efficient condition in 3 dictates that the total benefit should be fully 

distributed among the players. The last condition says that the Shapley value is an additive 

allocation rule. The Shapley value calculates a fair division of the utility, based on 

individuals’ contributions, among the members in a coalition. It can be considered as a 

                                                 
20 Substitutes: i and j, elements of N, are substitutes in v if for all S containing neither i nor j, {}( ) { }( )jSviSv ∪=∪ . 

21 An element i of N is called a null player if {}( ) ( )SviSv =∪  for all NS ⊆ . 
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weighted average of marginal contributions of a member to all the possible coalitions in 

which it may participate.  

For every N, there exists a unique Shapley value on GN, which can be calculated 

using the formula below. 

Theorem 1 (Shapley [1953]): ∑ −∪=
R

ii SviSvniv )](}{([)!/1()(ϕ , where R runs over all n! 

different orders on N, and Si is the set of players preceding i in the order R. 

This theorem enables us to solve for the Shapley value for any given cooperative game, 

although the calculation might be complicated sometimes. In fact, in some cases, the value 

can be more easily found using the definition itself, as we will see later.  

Another important concept of the solution to the cooperative game is the core, which 

is defined as follows. 

Definition 6: The core of the game (N, v) is the set of all imputations y, such that 

∑
∈

≤
Si

iySV )( for all NS ⊂ . 

Unlike the Shapley Value the core is not a single payoff vector, but a set of payoff vectors, 

which can be empty. The core of a cooperative game consists of all undominated allocations 

in the game. In other words, the core includes all allocations with the property that no group 

can do better by deserting the grand coalition.  

There is no general relationship between the two solution concepts described so far. 

The Shapley value may not be in the core, even when it is not empty. Intuitively the Shapley 

Value represents a reasonable compromise, whereas the core represents a set of payoff 

vectors which are, in a certain sense, stable.  

For each electricity cost allocation problem ),( πC , we can calculate the Shapley value 

and the core of the associated cooperative game (N, v). Then an allocation to the original 

electricity problem can be yx −= π where y is the Shapley value or an imputation vector in 

the core, depending on which solution concept we use.  

As an application, we adopt the method to the electricity cost allocation 

problem ),( πC  formulated from our three-bus example, where 1850 C ≥ , 114001 =π , 

54002 =π , 4503 −=π , 57004 −=π , 36005 −=π , 8006 =π , and 60007 −=π . The 
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associated cooperative game is (N, v), where }7,6,5,4,3,2,1{=N , and  

( ) { }
{ }

SNS
CC

CSv

∈⊆∀
−=−=

−−++=

6 2, 1, s.t. ,        
 18501850 ,0        

15750800540011400 ,0max

                             (1) 

( ) { }
{ }

SSNS
C

CSv

∉∈⊆∀
−=

−−+=

6 and ,2 1, s.t. ,        
1050 ,0        

15750540011400 ,0max

                                       (2) 

0)( =Sv  ∀ other NS ⊆                                                                 (3) 

3.4.1 Allocation Rule Based on the Shapely Value 

For calculation simplicity, let us further assume that C < 1050. Since players 3, 4, 5 

and 7 are null players in this game, their powers are all 0, i.e. 

0)()()()( 7543 ==== vvvv φφφφ . Players 1 and 2 are substitutes, so 21 )()( vv φφ = . By 

Theorem 1, we have that the power of buyer 3 is
3

800)( 6 =vφ . Then 

23
375,2

2
))()((

)()( 6
21

CvNv
vv −=

−
==

φ
φφ .  The corresponding allocation to the original 

electricity problem can then be derived as iii yx −= π  for Ni∈ and has the following values:  

}6000 ,
3

1600 ,3600 ,5700 ,450 ,
23

13825 ,
23

31825{ −−−−++=
CCx  

At this allocation, sellers 1 and 2 and buyer 3 share the investment cost and fully 

compensate the others for their losses. Moreover, the more does one benefit from the 

investment, the more she would pay. Therefore, among the three beneficiaries, seller 1 pays 

the most, and buyer 3, the least.  

3.4.2 Allocation Rule Based on the Core 

Let { 765432,1 ,,,,, yyyyyyy } be a payoff vector for the players of the game. For it to 

be in the core, the payoff vector should satisfy the conditions specified in Definition 6, which 

can be simplified to the following:  

0,,,,, 765432,1 ≥yyyyyyy  
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Cvyy −=≥+ 1050)2 ,1(21  

Cvyyy −=≥++ 1850)6 ,2 ,1(621  

CNvyyyyyyy −==++++++ 1850)(7654321  

Then we get: 

Cyyyyyyyy −=++≤==== 1850 and 800 ,0 62167543  

Therefore, the core of the game is{ }0 , ,0 ,0 ,0 , , cba , where 8000 ≤≤ c , cCba −−=+ 1850 , 

and 0 , ≥ba . 

Because yx −= π , an allocation rule of this electricity cost allocation problem based 

on the core is given as follows: 

}6000,,3600,5700,450,,{ 621 −−−−= xxxx  

where CxxC +≤+≤+ 750,15950,14 21  and 8000 6 ≤≤ x . As is in 3.4.1, the investment 

cost and compensation for the sufferers should be allocated among 1S , 2S , and 3B  only. The 

most noticeable difference between the allocation rules in 3.4.1 and 3.4.2 is that the rule in 

3.4.1 maps the electricity problem to one single allocation, while 3.4.2 gives a set of 

allocations. In our example, the allocation based on the Shapley value is included in the set of 

allocations based on the core. Actually, the Shapley value is always in the core for the type of 

games we study in this paper, but it is not necessarily true for any arbitrary game22.  

More generally, for any electricity cost allocation problem, the allocation rules based 

on the Shapley Value and core both dictate that the agents that will benefit from the 

investment project should undertake the investment, finance it and compensate those who 

will suffer from it. The potential sufferers should be fully compensated such that they are 

neither better-off nor worse-off after the investment. 

                                                 
22 As is shown in 3.5, the electricity cost allocation problem is a bankruptcy problem, for which the Shapley value is always 
in the core. 
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3.5 Bankruptcy Problem and Allocation Rule Based on the 
Nucleolus 

So far, we have formulated the cooperative game associated with the electricity cost 

allocation problem and defined the allocation rules based on the Shapley value and core of 

the game. In this section, we find a third allocation rule by applying another solution concept, 

the nucleolus to the induced cooperative game. Like the Shapley value, the nucleolus is also 

a one point solution. Here is the interpretation behind the notion of the nucleolus. Given a 

payoff vector y  each coalition S looks at ( ) ( )SySv − , which represents the “complaint” of 

the coalition (it could be positive or negative). The higher the complaint the more strongly 

the coalition objects to y . Thus we want to minimize complaints under the feasibility 

constraint. We do so starting with the maximal complaint, i.e., we look at 

( ) ( )( ){ }SySv
NSy

−
⊆

maxmin . Then we minimize the next highest complaint when considering only 

the payoff vector that minimized the highest complaint, and so on. What we get is the 

lexicographic minimum of all complaints. It turns out that we are left with a unique payoff 

vector which is the nucleolus.  

The nucleolus has the virtue that it is always in the core when the core is non-empty. 

The drawback is that the calculation of the nucleolus is extremely complicated in general. 

Fortunately, the nucleolus is easy to find for some types of cooperative games. One of them 

is the game induced by the bankruptcy problem, whose definition is given below. Although 

its motivation is different, we will see that the bankruptcy problem and the electricity cost 

allocation problem are closely related. 

3.5.1 Bankruptcy Problem and Consistent Allocation 

Definition 7 (Aumann and Maschler (1985)): A bankruptcy problem is defined as a pair (E; 

d), where ( )nddd ,...,1= , ndd ≤≤≤ ...0 1 and nddE ++≤≤ ...0 1 . 
 

RE ∈  is the estate and ( ) n
n Rdd ∈,...,1 denotes a vector of claims or debts. The condition 

nddE ++≤≤ ...0 1  means that the total value of the estate can not cover the total liability, 

hence the name “bankruptcy”.  
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 An allocation to the bankruptcy problem (E; d) is an n-tuple ),...,,( 21 nyyyy = of real 

numbers with Eyyy n =+++ ...21 . For each bankruptcy problem (E; d) there is an 

associated cooperative game (N, w), where },...,2,1{ nN =  and ( )
⎭
⎬
⎫

⎩
⎨
⎧

−= ∑
∉Si

idESw ,0max . 

The imputations to this game will give allocations to the corresponding bankruptcy problem. 

First think of a two-player bankruptcy problem )),(;( 21 ddE , One possible allocation 

can be found in the following way. Each claimant i concedes },0max{ idE −  to the other 

claimant j. The amount at issue is therefore },0max{},0max{ 21 dEdEE −−−− ; it is shared 

equally between the two claimants, and in addition, each claimant receives the amount 

conceded to her by the other one. Thus the total amount awarded to i is   

},0max{
2

},0max{},0max{ 21
ji dE

dEdEE
y −+

−−−−
= , for 2,1, =ji and ji ≠  

We will say that the above division of E for claims 1d  and 2d  is prescribed by the Contested 

Garment (CG) principle. If one views the allocation as a function of E, one obtains such a 

process: Let 21 dd ≤ . When E is small, it is divided equally. This continues until each 

claimant has received 2/1d . Each additional dollar goes to the greater claimant, until each 

claimant has received all but 2/1d of her claim. Beyond that, each additional dollar is again 

divided equally. 

The CG principle generalized to a rule for the n-player bankruptcy problem 

)),...,(;( 21 ddE is called the coalitional procedure. Let ∑
∈

=
Ni

idD and assume that 

nddd ≤≤≤ ...21 . According to the coalitional procedure, we treat a given n-person problem 

in one of the following three ways, depending on the values of E and d: 

1. Divide E between {1} and {2, …, n} in accordance with the CG solution of a 2-person 

problem, and then use the (n-1)-person rule, to divide the amount assigned to the coalition 

{2, …, n} between its members.  

2. Assign equal awards to all creditors. 

3. Assign equal losses to all creditors.  
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Specifically, 1 is applied when
22

11 nd
DE

nd
−≤≤ ; we use 2 when 

2
1nd

E ≤  and 3 

when
2

1nd
DE −≥ . 

This coalitional procedure (or CG principle for in 2-person case) generates an 

allocation to the bankruptcy problem. Given an allocation, if for all ji ≠ , the division of 

ji yy +  prescribed by the contested garment (CG) principle for claims ji dd ,  is ),( ji yy , this 

solution is called a consistent solution. That is, at a consistent solution, the redistribution 

between any two agents according to CG principle will yield exactly the same result. 

Aumann and Maschler (1985) show that each bankruptcy problem has a unique consistent 

solution, which is exactly the nucleolus of the corresponding cooperative game. And the 

coalitional procedure described above computes this consistent solution, or the nucleolus of 

the induced game.  

3.5.2 Electricity Cost Allocation Problem and Bankruptcy Problem 

Now we have known much about the bankruptcy problem. In what follows, we will 

show that our electricity cost allocation problem is closely related to the bankruptcy problem, 

so that we can apply our knowledge of the bankruptcy problem to the electricity problem to 

define its allocation rule.  

Observation: For each electricity cost allocation problem ),( πC , there is a bankruptcy 

problem (E; d), such that both problems induce the same cooperative game. 

Proof. Given ),( πC , define a bankruptcy problem (E; d), where ∑
=

−=
n

i
i CE

1

π and 

n
iid 1}),0(max{ == π . Obviously the cooperative games induced by the two problems have the 

same set of players, so what remains is to prove that the worth of each coalition is the same 

for the two games. The game associated with ),( πC  has the worth  

( ) }},0min{,0max{ ∑∑
∉∈

+−=
Si

i
Si

i CSv ππ , NS ⊆∀                       (4) 

The game associated with (E; d), where ∑
=

−=
n

i
i CE

1

π  and n
iid 1}),0(max{ == π  has the worth 
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( )

  },},0min{,0max{        

}},0max{},0max{},0min{,0max{        

},0max{,0max{
1

NSC

C

CSv

Si
i

Si
i

Si
i

Si
i

Si
i

Si
i

Si
i

n

i
i

⊆∀+−=

−++−=

−−=

∑∑

∑∑∑∑

∑∑

∉∈

∉∉∉∈

∉=

ππ

ππππ

ππ

     (5) 

The expression on the right of the last equation mark is exactly the same as the right-hand 

side in (4). Therefore, ),( πC and (E; d) induce the same cooperative game.                   (QED) 

Observation 1 is important, because it allows us to get allocations of the electricity 

cost allocation problems, a new type of problems by finding the solutions to the 

corresponding bankruptcy problems, which we are already very familiar with. According to 

this observation, each electricity cost allocation problem ),( πC  is associated with a 

bankruptcy problem 

∑
=

=−≡
n

i

n
iiin CddE

1
1,1 )}),0(max{;())...,(;( ππ                                      (6) 

In this problem, the total surplus ∑
=

−
n

i
i C

1
π  has to be divided among the agents. 

Applying the coalitional procedure, we will get the consistent allocation y for this problem. 

Then the allocation of the original electricity problem can be derived as x = π – y.  

3.5.3 Allocation Rule Based on the Nucleolus 

As an example, consider the class of electricity problems ( )( )21 ,, ππC  with only two 

agents. Without loss of generality, assume that 21 ππ ≥ . By the CG principle we get the 

allocation of surplus (y1, y2) for the problem in (6): 

)
2

,
2

( 21
CC

−− ππ , if C≥21 ,ππ  

)
2

,
2

( 22
1

ππ
π +−C , if C≥1π  and C<≤ 20 π  

)0,( 21 C−+ππ , if C≥1π  and 02 <π  

)
2

,
2

( 2121 CC −+−+ ππππ , if C<≤ 11 ,0 ππ  

Each pair of numbers in the parentheses above represent the allocation of the total 
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surplus between the two players. Specifically, if both agents’ individual benefits from the 

investment exceed the investment cost, the cost will be equally distributed between the 

agents and each agent will end up getting her original benefit less half of the investment cost. 

If both agents benefit from the investment, but one benefits more than the cost and the other, 

less than the cost, the latter will get half of her benefit and the rest will go to the pocket of the 

former. Another possible case is that one of the agents has a benefit higher than the 

investment cost, while the other agent will suffer from the investment. In that case, the 

beneficiary has to pay the investment cost and fully compensate the sufferer for her loss, such 

that the sufferer’s welfare will be exactly the same as that before the investment. So the 

beneficiary will end up with all the social surplus. The social surplus will be equally divided 

between the two agents, if both of them benefit from the investment, but each has the benefit 

lower than the investment cost.  

Having the allocation of surplus, we can obtain the cost allocation of the electricity 

problem: 

)
2

,
2

( CC , if C≥21 ,ππ ; 

)
2

,
2

( 22 ππ
−C , if C≥1π  and C<≤ 20 π ; 

),( 22 ππ−C , if C≥1π  and 02 <π ; 

  
)

2
,

2
( 1221 CC +−+− ππππ , if C<≤ 21 ,0 ππ . 

Now we define the electricity CG principle for the 2-player electricity cost allocation 

problem: 

1. If one player suffers from the transmission investment, e.g. 02 <π , she will receive the 

full amount of her loss 2π , or in other words, pay the negative amount of her loss. The 

investment cost plus the compensation for the sufferer 2π−C will be defrayed by the 

beneficiary.  

2. If both players benefit from the transmission investment, i.e. 0, 21 ≥ππ , the cost that 

player i will pay is 
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)max(
2

),0max(),0max( 21
ji CCCCx π

ππ
−+

−−−−
=  

for ji ≠ . This formula dictates such a process: No one will pay more than her benefit, so 

each player i needs to pay at least ),0max( jC π− , imposed by the other player j. The amount 

at issue is therefore ),0max(),0max( 21 ππ −−−− CCC .It is shared equally between the two 

players. Plus the amount imposed on her, the total cost player i has to pay will be 

)max(
2

),0max(),0max( 21
jCCCC πππ

−+
−−−− .   

Note that the electricity CG principle described above is monotonic, in the sense that 

for fixed benefits (or losses) 21 ,ππ , each of the two payments is non-decreasing in the 

investment cost C. That is, no one will end up paying less if the investment cost increases.  

For the general n-player electricity problem, the cost allocation can be derived from x 

= π – y, where y is the consistent allocation of the corresponding bankruptcy problem in (6), 

or equivalently the nucleolus of the associated cooperative game. Let us call the rule the 

electricity coalitional procedure. We will show shortly that the allocation prescribed by this 

procedure is a consistent allocation in the electricity cost allocation context. That is, at this 

allocation ),...,( 21 xx , for all ji ≠ , the division of ji xx +  determined by the electricity CG 

principle for claims iπ , jπ  is still ),( ji xx .  

Proposition 1: The electricity coalitional procedure yields the consistent allocation for all 

electricity cost allocation problems. 

Proof. Let ),...,( 21 xx  be the allocation prescribed by the electricity coalitional procedure of 

the electricity problem )),...,(,( 1 nC ππ . Let ),...,( 1 nyy  be the consistent allocation of the 

corresponding bankruptcy problem )}),0(max{;( 1
1

n
ii

n

i
i C =

=
∑ − ππ . We must have iii yx −= π , 

for i=1,…,n. We need to show that ),( ji xx is the allocation from the CG principle of the 

electricity problem )),...,(,( 1 nji xx ππ+  for all ji ≠ . Note this 2-player problem is 

equivalent to the 2-person bankruptcy problem ))),0max(),,0((max(;( jiji yyyy + . 

Consistency implies that the allocation to this problem dictated by the CG principle is 
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),( ji yy . So the allocation of the electricity problem )),...,(,( 1 nji xx ππ+  prescribed by the 

electricity CG principle is ),( ji xx .                                                                                  (QED) 

Then does the electricity problem have a unique consistent allocation, as does the 

bankruptcy problem? The answer is yes.  

Proposition 2: Each electricity cost allocation problem has a unique consistent allocation.  

Proof. First we prove that there is at most one consistent solution. If there were more, we 

could find consistent solutions x and z, and players i and j, with ii xz > , jj xz < , and 

jiji xxzz +≥+ . Consistency implies that if only i and j are involved, the CG principle 

allocates jz  to j when the total cost is ji zz + , and jx  when it is ji xx + . Since 

jiji xxzz +≥+ , the monotonicity of the CG principle then implies jj xz ≥ , contradicting 

jj xz < .  

Second we show that there is at least one consistent solution. This holds, since we 

already know one, the allocation based on the nucleolus of the induced cooperative game. 

                  (QED) 

Because the allocation based on the nucleolus of the corresponding cooperative game 

is consistent, and the electricity problem has only one consistent allocation, it is safe to say 

that the nucleolus-based allocation is the unique consistent allocation. 

Now let us apply the rule to the three-bus cost allocation problem earlier. The 

problem is equivalent to a bankruptcy problem (E; d), where 01850 ≥−= CE and d = 

{11400, 5400, 0, 0, 0, 800, 0}. The consistent solution to this bankruptcy problem is  

y = { 765432,1 ,,,,, yyyyyyy }, where 07543 ==== yyyy ; If ,650≤C  then y6 = 400, y1 = y2 

=
2

1450 C− ; If 650>C , then y1 = y2 = y6 =
3

1850 C− . So the allocation rule to the original 

electricity problem is ),...,,( 21 nxxxx = , where 4503 −=x , 57004 −=x , 36005 −=x , and 

60007 −=x ; and if 650≤C , 
2

21350
1

Cx −
= , 

2
9350

2
Cx −

= , and 4006 =x ; if 

650>C
3

32350
1

Cx +
= , 

3
14350

2
Cx +

= , and 
3

550
6

Cx +
= .  
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Similar to the allocation rules defined in Section 3.4, this rule dictates that the agents 

who will suffer from the investment should be fully compensated and that all the cost of 

investment plus compensation should be shared by the agents who will benefit.  

3.6  Conclusions 

To sum up, we have defined rules for allocating electricity transmission investment 

cost on the basis of three different solution concepts of the cooperative game, namely the 

Shapley value, the core and the nucleolus. These rules give reasonable allocations for the 

electricity cost allocation problem. The central point in each rule is that the potential 

beneficiaries of transmission investment should pay to get benefits and the potential sufferers, 

be compensated for their losses. Note that the allocations rules we propose provide options 

for electricity cost allocation in the absence of any mechanism. They tell what we should do 

in theory, and hence provide a benchmark, against which the allocation methods in reality 

can be compared to see if they are proper or need to be improved upon. One can not say 

which rule is the best and which is the worst.  

In this paper, we do not consider the possibility of the agents gaming against the 

system or any uncertainty. Nor do we incorporate the dynamic aspects such as the market 

entry in the long run. With these things incorporated, the calculation of the benefits and 

losses of transmission investment would be more complicated. But the allocation rules we 

derive here are still applicable, as long as we can figure out the benefits and losses.  

The allocation rules presented in this paper also apply to the situation with 

uncertainty, as long as we can identify the benefit or loss from the transmission investment 

for each agent. The difference is that in the uncertainty case, expected benefits and losses 

rather than deterministic ones might be used. The methods for determining the expected 

benefits and losses are seen in the literature. 
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CHAPTER 4.  EVALUATING THE EFFICIENCY OF 
FINANCIAL TRANSMISSION RIGHTS AUCTIONS: 

EVIDENCE FROM THE U.S. MIDWEST ENERGY REGION 

4.1  Introduction 

In March 2005, the Midwest Independent System Operator (MISO) officially adopted 

the Wholesale Power Market Platform (WPMP) proposed by U.S. Federal Energy 

Regulatory Commission (FERC) in April 2003. One of the important features of FERC's 

WPMP design is to help alleviate the transmission congestion problems by issuing financial 

transmission rights (FTRs). By construction, an FTR is a financial contract that entitles the 

holder to a stream of revenues (or charges) based on the difference between the hourly day-

ahead locational marginal price (LMP) at the sink and source nodes. Due to congestion on 

transmission lines, day-ahead LMPs can be very volatile, and FTRs make a hedging 

instrument against the price risks. In principle, market participants could reduce the price 

uncertainty by purchasing FTRs for a specified amount of MWs on the paths of the 

transmission grid that they anticipate to be congested during a given period of time23. 

But in real practice, to what extent FTRs have performed in helping market 

participants hedge transmission congestion exposure in the new Midwest wholesale power 

market is still unclear. Moreover, is the current FTRs market efficient in terms of having the 

clearing FTR prices match closely with agents' expectations about financial loss caused by 

transmission congestions? In this study, we will address these two questions using the 

publicly available MISO FTR auction data and historical LMP data. 

As far as we know, no empirical work up to now has been done to analyze the MISO 

FTR market. Even for a broader geographic range, only a handful few studies have been 

conducted to investigate the empirical aspects of FTR market in other regions such as New 

York. Adamson and Englander (2005) examined the efficiency of the New York 

                                                 
23 FTRs are available not only for physical paths. They can be defined between any two nodes in the grid. 
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transmission congestion contract (TCC) market24. They used monthly TCC auction prices 

and congestion revenues between November 1999 and April 2003. A two-stage modeling 

approach was adopted to analyze the data. In the first stage, they used the time series ARCH-

ARMA model to forecast the mean and variance of spot prices (congestion rents). Then in 

the second stage, a simple linear model was proposed to regress TCC auction prices on the 

predicted mean and variance of spot prices from the first stage of modeling. From the results, 

they concluded that the New York TCC auctions were highly inefficient, even after allowing 

for risk aversion among bidders in the auctions. 

Siddiqui et al. (2005) carried out another empirical study on the New York TCC 

market based on annual TCC auctions in years 2000 and 2001. They found that although 

TCCs appeared to provide a potentially effective hedge against volatile congestion rents, the 

prices paid for TCCs were systematically different from the resulting congestion rents. Their 

conclusion was that the unreasonably high risk premiums paid for the TCCs suggested an 

inefficient market and that the possible explanations were lack of liquidity in TCC markets 

and the difference between TCC feasibility requirements and actual energy flows. However, 

these results held only under the assumption that market participants are all risk-neutral. 

Risk-averse agents, instead, may pay for TCCs the amounts more than the expected 

congestion charges. Therefore, the deviation of TCC payments from resulting congestion 

revenues did not necessarily indicate market inefficiency. 

In their follow-up work (Siddiqui et al. 2006), they re-analyzed the New York TCC 

data, taking into account possible risk aversion of market participants. Instead of using a 

linear model, they employed three different concave "utility functions" and fitted nonlinear 

regressions to the TCC payments and revenues data25. Their results showed that market 

participants were only slightly risk averse (or even risk seeking, depending on the utility 

function employed). Thus, risk aversion by itself could not fully explain the systematic 

divergence between the TCC prices and congestion rents. The authors concluded that it was 

the very design of these markets, rather than the behavior of market participants that led to 

the observed discrepancy between prices and revenues. 

                                                 
24 TCC: Transmission Congestion Contract, is one implemented form of FTR. 
25 We put question marks on the way Siddiqui et al. (2006) use "utility" functions in their regression specifications in that the 
direct substitution of the FTR prices in the form of concave utility function is not justified. 
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In spite of their original empirical work in evaluating the FTR auction market, we 

would like to point out a somewhat subtle and yet critical problem in Siddiqui et al. (2005) 

and (2006). That is, in these two papers, they treat the ex-post realized data as if they were 

ex-ante to match their empirical methods without stating clearly the underlying assumptions 

and their justifications for doing so. Given the situation that most of the ex-ante data are 

difficult or even impossible to obtain (confidentiality issue for example), one contribution of 

our paper is to try to state clearly the underlying assumptions we make to bridge the 

inconsistency between ex-ante method and ex-post data, and provide some theoretical 

foundations to the empirical methods we use. 

In our study, we focus on the FTR market in the Midwest energy region (MISO), 

which has never been investigated empirically in the literature. Compared with the other FTR 

markets such as New York's, the MISO FTR market has a much shorter history. The scarcity 

of available data with MISO poses a great challenge to reaching any complete conclusion 

about this emerging market. Unavoidably, we need to make assumptions in order to analyze, 

to the best extent, the data we could obtain. Although some of the assumptions cannot be 

tested for the moment due to insufficient data, we will be able to check for validity of these 

assumptions once more data become available. Through our analysis, we find a number of 

stylized facts as well as evidence of the performance and efficiency of the MISO FTR market. 

In addition, we make suggestions about improving data collections by MISO or other 

research entities, so that more in-depth studies could be carried out in future to evaluate and 

monitor this huge market. Our work is original in that no one has ever conducted any 

empirical study on this new market. Besides, our work is not restricted to the partial analysis 

due to limited data, but sheds light on what needs to be done to make the data more complete 

and meaningful. 

The rest of the chapter is organized as follows. Section 4.2 provides some background 

information about the MISO energy and FTR auction markets. In section 4.3, we review the 

underlying theory of hedging and risk preferences on which our analysis is based. Section 4.4 

provides a detailed description of the data. The empirical methods employed and 

assumptions are discussed in section 4.5. In section 4.6, we present and interpret our results. 

Finally, the concluding remarks are given in section 4.7. 
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4.2  MISO Energy and FTR Markets 

Founded on February 12, 1996, MISO is an independent and non-profit organization 

whose primary roles are to provide equal access to the transmission system and ensure 

reliable and efficient electric system in a competitive wholesale power market in the Midwest 

region. Currently MISO is managing transmission operations for all or part of 15 U.S. states 

plus Manitoba province in Canada. 

 
Figure 1: The current MISO service territory 

(Source: MISO, http://www.midwestiso.org/page/About%20MISO) 

 

Figure 1 shows the current MISO operation territory. Since April 2005, MISO has 

been operating a day-ahead energy market, a real-time energy market and an FTR market. 

The day-ahead market is a forward market in which hourly LMPs are calculated for each 

hour of the next operating day. According to MISO's Market Concepts Study Guide (MISO 

2005c), the day-ahead market is cleared using the security-constrained unit commitment 

(SCUC) and security-constrained economic dispatch (SCED) algorithms to satisfy energy 

demand bid and supply offer requirements. To be specific, the objective in clearing the day-

ahead market is to minimize the costs of day-ahead energy procurement over the 24-hour 

dispatch horizon based on the offers and bids, subject to network constraints and resource 

operating constraints. The results of the day-ahead market clearing include hourly LMP 
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values and hourly demand and supply quantities, which are posted on MISO's market portal 

on 1700 hours EST. The real-time energy market, in contrast, is an instant balancing market 

in which the LMPs are calculated every five minutes, based on MISO dispatch instructions 

and actual system operations. These two markets operate in a coordinated sequence and are 

settled separately. In the settlement of the day-ahead market each hourly MW injection is 

paid the day-ahead LMP at its node and withdrawals are charged the day-ahead LMP at their 

respective nodes. The day-ahead LMPs are also used to establish the settlement value of 

FTRs and bilateral transactions. The real-time settlement is based on actual hourly quantity 

deviations from the day-ahead scheduled quantities and on real-time prices integrated over 

the hour. Any deviation in the quantity from the day-ahead schedule (including bilateral 

transactions) is charged or paid real-time LMPs. 

4.2.1  LMP Components 

Since FTRs crucially depend on locational marginal prices (LMPs), it is important to 

take a close examination on the LMP and its components. By definition, LMP at any given 

pricing location is the minimum incremental cost of servicing one additional unit of demand 

at that location under the constraints of production, congestion and transmission losses. 

LMPs vary by time and location. Variability of LMPs is due to the physical constraints, 

congestion and losses. For each node, MISO determines three separate components of its 

LMP, namely the marginal energy component (MEC), marginal congestion component 

(MCC) and marginal loss component (MLC). MEC is the LMP of the reference node, so is 

the same for all the nodes. MCC and MLC of a certain node represent the marginal cost of 

congestion and marginal cost of losses, respectively at that node relative to the reference 

node.  

nnrn MLCMCCMECLMP ++=  

rr MECLMP =  

where r is the reference node and n is any node other than the reference one. 

 Of the three LMP components, rMEC  is calculated as the marginal cost of energy at 

the reference node r, so is determined by the cost functions of the generators at that node. 

The congestion component nMCC  is calculated as follows: 
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)(
1
∑
=

×−=
K

k
knkn FSPGSFMCC  

where K is the number of thermal or interface transmission constraints (also called flowgates), 

nkGSF  is the shift or distribution factor for the generation at node n on flowgate k and kFSP  

is the shadow price of the thermal limit on flowgate k. Intuitively, nkGSF  is the proportion of 

each MW injected at node n and withdrawn at the reference node r, and kFSP  is the cost 

saved from one MW increase in the capacity of flowgate k26. In the Midwest market, 

congestion is handled financially through the MCC of the LMP, and the congestion revenue 

from holding the FTR is determined by the difference in MCCs. 

 nMLC  is calculated using the equation 

rnn MECDFMLC ×−= )1(  

where nDF  is the delivery factor for node n to the reference node. nDF  is equal to 
nG

L
∂
∂

−1 , 

where L is system losses and nG  is the amount of power injected at node n. Therefore, 
nG

L
∂
∂  

is the change in system losses due to an incremental change in the power injection at node n 

holding everything else constant.  

4.2.2 Overview of MISO FTR Acquisition 

FTRs are tradable financial instruments that allow market participants to hedge 

against the cost and uncertainty that may arise from congestion in the transmission grid. The 

FTR holders are entitled to a stream of revenues or charges based on the congestion over the 

FTR path. FTRs are used in the day-ahead market only and do not apply to the real-time 

market. They do not protect market participants from congestion charges related to 

scheduling power in the real-time market or deviating from the day-ahead schedule. Nor do 

they hedge against transmission loss charges. Besides, FTRs are independent of the physical 

power dispatch. The FTR holder has the financial right to the congestion between two 

specified nodes regardless of the actual energy deliveries. 

                                                 
26 According to the industry convention, the effect of losses is ignored in determining GSFs. 
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An FTR is specified by its source and sink, the MW amount, the term for which the 

FTR is in effect, the time period (peak or off-peak hours), and whether the FTR is an 

obligation or option. FTR options are currently not available in the MISO market. An FTR 

obligation grants the holder the right to collect, for each MW of FTR, the congestion rent 

accumulated from the source to the sink for every hour during the effective period. The 

congestion rent is determined by the difference between the congestion components in the 

day-head LMPs at the sink and source. Therefore, an FTR obligation can have a positive or 

negative economic value, depending on the actual congestion pattern between the source and 

sink on which the FTR is defined. During the hours when the congestion component at the 

sink is greater than the congestion component at the source, the FTR yields a positive 

revenue to the holder. If, instead, the congestion occurs from the sink to the source, the 

holder of the FTR will have to pay MISO an amount equal to the congestion rent in the 

congested direction, or equivalently receive a negative revenue. 

In the Midwest, market participants can acquire FTRs through allocations (annual and 

monthly), auctions (annual and monthly) and the secondary market. FTRs are first allocated 

in the annual allocation based on existing entitlements from transmission service reservations 

and grandfathered agreements. The annual FTR auction is held right after the annual 

allocation and prior to the beginning of each year for the subsequent four seasons27. In this 

auction, market participants can submit offers to sell or bids to buy FTRs and MISO 

determines the winning sellers and buyers. In order to be eligible for the annual auction, the 

FTR must be valid for the entire period of the seasons in the auction. A monthly allocation is 

performed for each operating month to come. Those FTRs eligible in the initial allocation 

that did not receive their full entitlement in FTR awards can be re-considered in this monthly 

allocation process. Then after the monthly allocation takes place, the monthly auction is 

conducted. Any FTR eligible for the monthly auction must be valid for the entire month in 

the auction. The exact timeline for the MISO monthly FTR allocations and auctions are given 

in Appendix A for a sample month (August 2005). There is also a secondary market for 

buying and selling FTRs. The FTR allocations are irrelevant to our research purpose in this 

                                                 
27 The four seasons are: (i) Winter: December, January, February; (ii) Spring: March, April, May; (iii) Summer: June, July, 
August; (iv) Fall: September, October, November. 
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paper, as there is no market or price for the allocation. Therefore, we do not consider the 

allocations in evaluating the market performance. In both the annual and monthly auctions, 

FTRs are sold and bought at the market clearing prices, the determination of which will be 

elaborated later. However, the data for the annual allocations are not sufficient since MISO 

has only adopted FERC's WPMP design since March 2005. In addition, a time interval of 

three months may be too long for discerning any change or trend in this market during the 

one-year period. Therefore, a monthly basis is proper for our research purpose. Although the 

secondary market is also relevant to our study, we have to ignore it, because little 

information is available about it. In all, considering relevance and availability, we finally 

choose to focus on the monthly FTR auctions and ignore the possible effects of other means 

to obtain FTRs. 

4.2.3 MISO Monthly FTR Auctions 

MISO conducts monthly FTR auctions for two purposes: (1) to allow MISO to sell 

FTRs for the adjusted monthly FTR capability of the market footprint, and (2) to facilitate the 

buying and selling of existing FTRs between market participants. Market participants buy 

from or sell to the available "pool" of system FTR capacity. All FTRs at the monthly auction 

have a term of one month beginning on the first day of the month following the auction. 

Market participants must submit their offers or bids to MISO during the monthly bidding 

period and MISO posts the auction results no later than 5 business days before the start of the 

subject month (see Appendix A for a more detailed MISO FTR allocation and auction 

timeline for a sample month - August 2005). Each monthly auction consists of two separate 

auctions: one for the peak period and the other for the off-peak period. Peak is the period of 

time ending 0600 hours Eastern Standard Time (EST) to 2200 hours EST on weekdays 

excluding holidays28. Off-peak is all periods not classified as peak. The purchaser of a peak 

(off-peak) FTR from the monthly auction is entitled to the aggregate congestion rents of the 

peak (off-peak) hours during the whole month. 

FTR bidders are responsible for submitting a bid that indicates the following: 

1. Type of FTR (obligation or option) 

                                                 
28 These holidays are specified by North American Electric Reliability Council (NERC). 
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2. FTR source and sink 

3. Maximum MW quantity desired 

4. Maximum acceptable price, in $/MW 

5. Period (peak or off-peak) 

Similarly, FTR sellers should submit an offer including the above items 1 through 5 

except that item 3 now becomes the maximum MW quantity offered instead of desired. 

Given the offers and bids for each monthly auction, MISO determines the winners (traders 

that get cleared, i.e., the infra-marginal traders) as well as FTR clearing quantities and 

clearing prices by solving a linear programming problem. Specifically, it maximizes the 

value of FTRs bought minus FTRs sold by auction participants subject to simultaneous 

feasibility constraints with "n-1" security constraints. All comparable FTRs are sold at the 

same market clearing price expressed in $/MW, which is calculated as the difference in the 

shadow price of the power flow balance constraint at the FTR source and sink in the FTR 

auction linear programming problem above. It can be interpreted as the negative of the 

marginal change in the objective function value due to an infinitesimal change in the flow 

from the FTR source to the sink. It is worth noting that the FTR clearing price can be 

negative, which means that the market participants who buy the FTR will receive money 

from MISO whereas those who sell the FTR will pay money to MISO. This usually happens 

when the particular line associated with this FTR is anticipated to be congested in the 

direction opposite to that specified by the FTR. 

4.3 Theory 

In this section, we first illustrate, through several examples, the role of FTRs in 

hedging against risks caused by the volatile location marginal prices (LMPs). In doing so, we 

consider two cases: electricity transaction scheduled on bilateral agreements and electricity 

transaction purely via the marked-based power pool. Then we demonstrate the relationship 

between the expected revenue from holding FTRs and the agent's willingness to pay to get 

them for both risk-neutral and risk-averse agents. 
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4.3.1 Hedging Role of FTRs 

LMPs in the electricity wholesale market provide the right incentives for generation 

and consumption, but also create a need to hedge the price changes. This leads to the interest 

in FTRs. Electricity transactions are usually settled through bilateral schedules or via the 

market-based power pool. In either case, FTRs provide a hedge against the congestion charge 

by reimbursing the holders part or all of the charge. How FTR works as a hedging instrument 

is illustrated through following several examples29. 

 
Figure 2: Bilateral contract with no congestion 

Let us first consider the case of bilateral agreements. If there were no transmission 

congestion, it is well justified to treat all production and consumption as if they took place in 

the same location since both buyer and seller are settled with the same price, which is the 

single equilibrium price in the market. Then the natural arrangement is to contract for 

differences against the equilibrium price. As depicted in Figure 2, a GENCO (G) and an LSE 

(L) are attached to node 1 and node 2, respectively. The two nodes do not have to be directly 

connected by a transmission line, so we use the dashed between them. The nodes and lines 

can be only part of a larger network, which is not drawn in the figure. Suppose G and L agree 

on a price of Bp  ($/MWh) for trading a fixed quantity of electricity q MWs at a specific hour. 

If there is no congestion in the network in this hour, the prices (or more precisely LMPs) at 

all nodes would turn out to be the same, hence denoted by a common price LMP. G will then 

sell electricity to the market at LMP and L will buy electricity from the market at LMP. Note 

that the q MWs that L purchases do not have to be produced by G, and the electricity that G 

                                                 
29 For simplicity, we do not consider transmission losses in our illustrative examples. 
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generates may be bought by other LSEs. So the arrows indicate the direction of the contract 

path. If BpLMP > , under the contract, G owes L BpLMP −  for each of the q MWs over this 

hour. In the opposite, if LMPpB > , L owes G LMPpB −  for each of the q MWs over this 

hour. This is the so-called contract for difference (CFD), which locks the actual transaction 

price at Bp  for both G and L and provides a perfect hedge against the price risk. Therefore, 

in the absence of congestion, a bilateral arrangement between the GENCO and the LSE can 

capture the effect of aggregate movements in the market, as the single market price gets up or 

down over time. 

 
Figure 3: Bilateral contract with congestion 

Most of the time, however, there is congestion somewhere in the transmission 

network. In that case, the price will differ depending on the location and G and L may no 

longer face the same price. This situation is illustrated in Figure 3. Let 1LMP  and 2LMP  be 

the locational marginal price at node 1 and 2, respectively and 21 LMPLMP ≠  due to the 

congestion. Also let Bp  be the bilaterally agreed contract price between G and L. Then at the 

settlement G will sell electricity to the market for 1LMP  and L will buy electricity from the 

market for 2LMP . If 21 LMPpLMP B << , then L pays BpLMP −2  more than the contracted 

price and needs to be compensated for the excessive payment. On the other hand, G receives 

1LMPpB −  less than the contracted price, so also needs to be compensated. Obviously, it is 

impossible to satisfy both parties only through the CFD and something else is needed to 

complement the CDF. 

Still consider the situation in Figure 3. Now suppose that apart from the CFD, G may 

obtain an FTR of q MWs defined from node 1 to node 2. The FTR entitles G to the difference 
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in the LMPs between the two nodes, i.e. 12 LMPLMP −  for that hour. L pays 2LMP  for the 

power. The settlement system in turn pays G 1LMP  for the power supplied. Thanks to the 

FTR, G ends up receiving 2LMP  for each MWs sold, and L ends up paying 2LMP  for each 

MW bought. In this sense, we come back to the previous situation in which the price is the 

same at all nodes, and the CFD will work out now.  If BpLMP >2 , G will compensate L for 

its excessive payment BpLMP −2  according to the CFD. If BpLMP <2 , G will be 

compensated for the loss 2LMPpB −  by L. As a result, no matter how the LMPs change, the 

transaction would be effectively settled at the deterministic, bilaterally agreed price Bp . On 

the other hand, L can also buy the same FTR and the result will be the same. The example 

indicates that in the presence of transmission congestion,   an FTR together with a CFD can 

provide full hedge against the risk associated with the LMPs. The function of FTRs in the 

scenario of bilateral contract actually lies in equalizing the price that the selling and buying 

parties face, which provides the condition for the CFD to be workable. The FTR provides 

hedge against locational price risks, while the CFD, against temporal price risks. In this 

example, the FTR together with CFD provides a perfect hedge for both parties, because the 

quantity of FTRs obtained exactly matches the contracted quantity of electricity. If G or L 

buys the FTR for an amount less than the contracted quantity of electricity, they will only 

have partial coverage. 

In summary, a seller and a buyer entering into a bilateral transaction of electricity 

between two nodes can always hedge against the price risk by using the FTR and CFD jointly.  

Now let us come to the case with no bilateral schedules. That is, each GENCO simply 

injects electricity to the power pool and gets the LMP at its own node for each MW injected. 

Each LSE withdraws electricity from the same power pool and pays the LMP at its own node 

for each MW withdrawn. Hence a GENCO does not know or care about where its power is 

withdrawn and who actually buys the power it has produced. Similarly, an LSE does not 

know where the power it buys comes from and who generates it. This is different from the 

transaction under a bilateral contract in which the seller and the buyer as well as the injection 
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and ejection nodes are designated and the transaction price is predetermined30. In the bilateral 

contract case, a combination of the FTR and CFD can provide a perfect hedge and make the 

payment and revenue nonrandom. Without a bilateral contract, however, it is not obvious to a 

market participant between which two nodes she pays the congestion charge. Hence she does 

not know for sure between which two nodes she should obtain the FTR to hedge the potential 

congestion. We can see this from the following example as depicted in Figure 4. 

 
Figure 4: Transaction via a power pool with congestion 

This figure looks similar to Figure 3, but notice that only the q MWs injection of G is 

given. G does not know where these q MWs would be withdrawn or through what paths they 

would be transited. G only knows that it would get 1LMP  for each MW it produces. 1LMP  is 

volatile and fluctuates with the generation, loads and congestion patterns. G is exposed to the 

price risk and might want to hedge against it. Suppose that LMP₂, for some reason, is 

relatively stable and does not change much31. If G purchases an FTR of q MWs from node 1 

to node 2, it would get 2121 )( LMPLMPLMPLMP =−+  for each MW generated. In this sense, 

holding the FTR reduces G's price uncertainty by making its revenue less volatile. If 2LMP  is 

virtually nonrandom, then the FTR provides a perfect hedge for G. If 2LMP  is also random, 

but is much more stable than LMP₁, then the FTR provides a non-perfect partial hedge. To 

reduce its revenue uncertainty, G could effectively associate its revenue with 2LMP  by 

holding the FTR from node 1 to node 2. 

                                                 
30 Though in the case of bilateral transaction, the q MWs purchased by the LSE may not be the same q MWs that GENCO 
produces, either. 
31 This might occur at a hub which consists of a set of nodes and whose LMP is derived from the average of the LMPs of 
those nodes. 
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This is not the only choice for the hedging. In fact, G can choose a set of FTRs 

(portfolio of FTRs) to achieve the same result. Let us take another example with a three-node 

network in Figure 5. 

 
Figure 5: The three-node electric network example 

In this example, the only generator G is located at node 1 and the only LSE L is 

located at node 2. For computational simplicity, assume that each line has the same 

impedance. Then of each MW injected at node 1, 
3
2 , 

3
1  and 

3
1  will move along line 1, line 2 

and line 3, respectively. Clearly, G will have a revenue of 1LMPq×  from injecting q MWs of 

electricity at node 1. To hedge against the congestion charge, G may obtain q MWs of FTR 

defined from node 1 to node 2. Then G's total revenue will be 

2121 )( qLMPLMPLMPqLMPq =−×+× . As mentioned earlier, if 2LMP  is nonrandom, then 

the FTR provides G with a perfect hedge. This is not the only way to achieve the 

deterministic revenue 2qLMP . An alternative could be that G obtains a portfolio of FTRs 

with q
3
2  MWs of FTR from node 1 to node 2,  q

3
1  MWs of FTRs from node 1 to node 3 

and q
3
1  MWs of FTRs from node 3 to node 2. G will again end up with 

23213121 )(
3
1)(

3
1)(

3
2 qLMPLMPLMPqLMPLMPqLMPLMPqLMPq =−+−+−×+× . This 

FTR portfolio also links G's revenue to 2LMP , which is less volatile than 1LMP . As will be 
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seen later, market participants in practice sometimes purchase more than one single FTR and 

indeed construct FTR portfolios.  

 
Figure 6: Transaction via a pool with congestion: FTR portfolio 

 

Figure 6 gives another example of hedging using an FTR portfolio. Similar to the 

previous examples, G injects q MWs to the power pool and receive payments at its own 

nodal price 1LMP  for each MW injected. Since 1LMP  fluctuates, G may want to hedge 

against the uncertainty using FTRs. Suppose that the LMPs at nodes 2, 3 and 4 change almost 

independently, such that the pairwise correlations between the LMPs at the nodes 2, 3 and 4 

are very small. Let 2
nσ  be the variance of the LMP at node n, for 4,3,2,1=n . Then G can 

reduce the price risk by holding a portfolio of FTRs associated with the nodes 2, 3 and 4. Let 

0,, 141312 ≥qqq  be the quantity of MWs that G obtains for the FTR from 1 to 2, from 1 to 3 

and from 1 to 4, respectively and assume that qqqq =++ 141312 . Consequently, G will get 

414313212

1414131312121 )()()(
LMPqLMPqLMPq

qLMPLMPqLMPLMPqLMPLMPqLMP
++=

−+−+−+
 

which is a weighted average of the LMPs of the three nodes. This revenue is still random and 

its variance can be calculated as 
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where 23σ , 24σ  and 34σ  are the pairwise covariances of the LMPs at nodes 2, 3 and 4. The 

second equality holds when the three LMPs are pairwisely uncorrelated. The variance of G's 

revenue in the absence of the FTR portfolio is 
2
1

2
1413121 )()var( σqqqqLMP ++=  

 If 2LMP , 3LMP  and 4LMP  are almost constant, that is, 2
2σ , 2

3σ  and 2
4σ  are nearly 

zero, then 0)var( 414313212 ≈++ LMPqLMPqLMPq and holding the FTRs completely 

eliminates the risk associated with 1LMP . If 2LMP , 3LMP  and 4LMP  are no more volatile 

than 1LMP , that is,  if 2
1

2
2 σσ ≤ , 2

1
2
3 σσ ≤  and 2

1
2
4 σσ ≤ , then 

)var()var( 1414313212 qLMPLMPqLMPqLMPq ≤++  

This relationship may also hold if 2LMP , 3LMP  and 4LMP  are negatively correlated. 

Hence, holding this FTR portfolio lowers G's risk exposure, although the portfolio may not 

completely eliminate the risk. In all, the FTRs provide G with a hedge, but not necessarily a 

perfect one. 

From the above examples, we find that under a bilateral agreement, FTRs together 

with CFDs can always provide a perfect hedge against the price risk and a GENCO ends up 

with a fixed revenue. In comparison, in the absence of bilateral agreements, the resulting 

revenue that a GENCO receives from selling electricity and holding FTRs is usually a 

function of the LMPs. So the revenue may not be fixed and its variability depends on the 

variations of LMPs and their covariances. Under some conditions, this variability of G's 

revenue is less than the one if G does not have FTRs, and FTRs provide a hedge against the 

risk. The hedging functionality of FTRs is similar for LSEs who purchase, rather than sell 

power. In analogy, holding FTRs can also provide a hedge against the volatile revenue of an 

LSE. 

A complete analysis of the hedging or coverage provided by FTRs requires 

knowledge of the power transactions that market participants enter into -- whether it is 
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through bilateral contract or via the power pool. The literature, however, often ignores the 

type of power transactions which motivates the market participants to obtain FTRs and only 

focuses on the random congestion charges. Knowing that the volatility in congestion charges 

comes from the volatility in LMPs which the transactions are based on, most papers conclude 

that a market participant simply has to purchase enough FTRs to hedge its transmission 

congestion exposure perfectly. They regard the congestion charges as the only random 

variables and make their reasoning in this way: since market participants can have these 

charges reimbursed by holding FTRs, FTRs will provide a perfect hedge. This, as can be seen 

from our previous examples, generally does not hold. An agent chooses FTRs to hedge 

against the risk with the LMP exposure, not simply the congestion charges. The FTRs may 

provide a full coverage for the congestion payment but not for the market participant's total 

income from power transactions via the pool. 

4.3.2 Theoretic Framework 

In this subsection, we explore the relationship between the expected congestion 

charge or equivalently the expected revenue from holding an FTR and the agent's willingness 

to pay for that FTR. Two types of risk preference are considered -- risk neutrality and risk 

aversion. For risk-neutral case, we can derive the relationship between the revenue and the 

payment analytically. However, it is much harder to do so for risk-averse case. Alternatively, 

instead of providing a rigorous proof as we did for the risk-neutral case, we will try to 

identify the relationship between the expected congestion revenue and the FTR payment 

through numerical simulation. 

Although from the previous subsection, we know that holding FTRs may not be able 

to eliminate completely the uncertainty with an agent's income in some cases, here we make 

assumption that FTRs will always provide a perfect hedge for our theoretical analysis. That is, 

an agent can make her profit deterministic or free of price risk by holding an FTR. Let w  

denote the non-stochastic total profit of an agent resulting from obtaining an FTR. Then 

without the FTR, the agent's profit is Rw − , where R is the congestion charge (or revenue) 

the agent has to pay and is a random variable. Hence, Rw −  is also a random variable and 

the agent's profit is uncertain. An FTR reimburses the congestion charge R for the agent no 
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matter how much R is. So the expected revenue from holding the FTR is )(RE . As a result, 

owning the FTR locks the agent's profit at w and provides a perfect hedge against the risk. Of 

course the agent has to pay in order to acquire the FTR. We will use F to denote the 

maximum $ amount she is willing to pay for the FTR. 

Consider a risk-neutral agent whose utility function can be expressed as 

( ) ππ baU +=  

where 0>b  and π  is the agent’s profit or payoff. Suppose that the congestion charge R is 

distributed according to a probability density function (PDF) ( )Rf . Then in the absence of 

FTRs, the agent’s profit Rw −=π  is a random variable and her expected utility is given by 

( ) ( )
( )ERwba

dRRfRwUEU

−+=

−= ∫
       

 

If she purchases FTR for $F, her utility will be 

( ) ( )FwbaFwU −+=−  

By certainty equivalence theory, the agent’s willingness to pay (F) for the FTR satisfies 

( )FwUEU −=  

Hence,  

( )REF =                                                                (1) 

which means that a risk-neutral agent is willing to pay up to exactly the expected 

charge/revenue from holding the FTR. Note that the relationship still holds if we divide both 

sides of equation (1) by any positive constant. Choosing the MWs of the FTR as the divisor, 

we then have that the expected congestion revenue of one MW FTR or the expected unit 

revenue (which is equal to the sink LMP less the source LMP) should be equal to the unit 

willingness to pay under risk neutrality. This justifies our use of congestion revenue per MW 

of FTR and the unit price in later analysis, instead of multiplying them by the quantity 

purchased. So if the expected unit revenue is plotted against the unit willingness to pay, it 

should be a 45 degree line if all agents are risk neutral. 

Now consider a risk-averse agent who would be willing to pay extra premium to 

stabilize his profit to a deterministic amount. By certainty equivalence theory, we have the 

following equation: 
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( ) ( )FwURwEU −=−                                                     (2) 

By Jensen’s inequality, it follows that 

( ) ( ) ( )( ) ( )ERwURwEURwEUFwU −=−<−=−                         (3) 

Then it is straightforward that the willingness-to-pay for FTR is always greater than the 

expected value for congestion charge. That is, 

ERF >                                                                    (4) 

This means that a risk-averse agent is willing to pay more than the expected charge or 

revenue from holding the FTR. However, the further relationship between F and ER depends 

not only on the entire distribution of random variable R but also on the utility function ( )⋅U . 

It is beyond the scope of this paper to explore such relationship in full detail. 

4.4 Data 

Our study focuses on the one-month FTRs that were purchased in the monthly FTR 

auctions in MISO from April 2005 to May 2006. The data we use are obtained from the FTR 

auction results of the twelve months and the historical day-ahead LMP files, which are all 

publicly available in MISO's website. Specifically, the results of each monthly auction 

include, for each FTR, the buyer, the source and sink, the MW amount awarded, the class 

(peak or off-peak), whether it is an obligation or option and the market clearing price 

measured in $/MW32. For each MW of FTR awarded, the buyer must pay the clearing price 

of that FTR, which is determined in the auction for each month t. So the clearing price is 

actually the unit cost of obtaining an FTR. Let nm
tF ,  denote the market clearing price of the 

FTR defined from node m to node n for month t, Tt ,...,1= . 

The auction results do not directly report the unit revenue from holding an FTR, that 

is, the congestion rent per MW accumulated from the source to the sink for the effective 

month. Hence in the data pre-processing stage, we calculate the unit revenue using the 

congestion component (MCC) of the day-ahead LMPs, which can be found in the historical 

day-ahead LMP files. For each of the twelve sample months, the historical day-ahead LMP 

dataset includes the MCC of each node for each of the 24 hours in each day of that month. 

                                                 
32 So far, all the FTRs auctioned in MISO are obligations. 
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For example, in April 2005, there are 30 days, each having 24 hours. So, for a node such as 

WPS.PULLIAM3, we have 24×30=720 hourly MCCs. The frame of the hourly MCCs for 

node WPS.PULLIAM3 in April 2005 is given in Table 1 as follows. 

Table 1: Hourly MCCs of node WPS.PULLIAM3 in May 2005 

 
 

The value in each cell in the figure is the MCC of node WPS.PULLIAM3 for the 

corresponding hour h of the corresponding day d in May 2005. For example, the cell 

corresponding to 1=h  and 1=d  is the MCC of node WPS.PULLIAM3 in the first hour on 

May 1, 2005. This table structure applies to all the other nodes in each month of the sample 

period. During the twelve months in our study, the nodes and number of nodes for each 

month stayed the same within that month, but might not, across months. As time went on, 

new nodes were added to MISO's transmission network or some existing nodes were 

removed from it. The number of nodes for each month as well as the change in the number 

from the previous to the current month is given in Table 2. 

 Given the MCC data described above, the revenue that the FTR owner gets for each 

MW of FTR held can be derived as the sum of the difference between the hourly sink and 

source MCCs in the day-ahead market over all hours in the effective month. Let 24,...,1=h  

index the hour, and tDd ,...,1=  index the day, where tD  is the number of days in month t. 

Let n
hdtp  be the MCC of node n at hour h on day d in month t. Then nm

tR , , the revenue from 

holding one MW of the FTR from node m to node n during month t can be computed as 

( )∑∑ −=
d h

m
hdt

n
hdt

nm
t ppR ,                                                      (6) 

We can also call nm
tR ,  the unit revenue of the FTR from m to n. Note that for peak FTRs, the 

revenues are calculated by aggregating MCC differences in the peak hours; for off-peak 
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FTRs, the MCC differences used in calculating the revenues are all those in the off-peak 

hours. So, in equation (6), the range of d and h over which the MCC difference is aggregated 

depends on whether the FTR is for peak or off-peak hours. 

Table 2: Reported number of nodes in MISO service region (April 2005-March 2006) 

 
 

We notice that in some months, some sources or sinks on which the FTRs were 

defined cannot be found in the list of the day-ahead LMP file of the corresponding months. 

In that case, we are unable to calculate the revenue from holding those FTRs. For example, in 

June 2005, the market participant EMMT bought 5.8 MWs of the FTR from node 

NSP.CHARA6 to node GRE.WILM, but the source node is not found in the LMP file for the 

same month. Such discrepancies occur because the commercial model changed after the FTR 

auction results were finalized. For example, the June 2005 auction was conducted in May 

2005. The June commercial model was propagated into the FTR system after the June 2005 

auction was completed. Sources and sinks on the awarded FTRs were corrected to match the 

updated model, but the auction result report was not updated since it reflected the actual 

outcome from the auction as it was conducted. A snapshot of the most current active FTRs in 

the system is available on the portal, but not currently posted on MISO public website. In our 

analysis, we shall ignore any FTR defined on the "missing" nodes. 
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Table 3: Reported number of distinct FTRs (April 2005-March 2006) 

 
 

Similar to the number of nodes, the number of FTRs purchased in the monthly 

auctions was not the same for each month either. More FTRs were bought in some months 

than others, as is shown in Table 3. Several factors contribute to the fluctuating number of 

the FTRs purchased. As the number of nodes on which FTRs are defined varies across month, 

the change in the FTR purchase number is natural and understandable. For example, if new 

nodes are added to the network, more FTRs will be available, since they can be defined on 

more combinations of nodes. Besides, seasonality may also cause more FTRs to be 

purchased in some months than others. With only one year's data, we cannot tell much about 

the effect of seasonality on the FTRs purchased. A longer sample period for a relatively 

stable transmission network is needed for analyzing the seasonality effect. This will be 

possible for MISO as time goes on. 

Before proceeding, let us introduce some notations for FTR types that is applied 

systematically throughout the rest of this paper. Since all auctioned FTR can be classified as 

either peak or off-peak, and people's purchasing decisions regarding peak and off-peak FTRs 

are expected to be different, we classify our data to two parts: peak and off-peak 

accordingly33. In addition, since there are certain FTRs (defined by point of source and point 

of sink) that are purchased by more than one buyer, and since all of them will receive the 

same prices and congestion rents, we will also distinguish our data between non-distinct and 

                                                 
33 According to MISO (2005a), peak periods are defined as: weekdays, for hours ending 0700 to 2200 hours Eastern 
Standard Time (EST), and excluding North American Electric Reliability Council (NERC) holidays. Off-peak periods are 
defined as: weekdays, for hours ending 0100 to 0600 hours EST and hours ending 2300 to 2400 EST, weekends, and NERC 
holidays, for all hours. 
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distinct. The non-distinct data are simply the original data while the distinct data are the data 

where duplicated FTR purchases on the same FTRs are removed. 

By this POND (Peak, Off-peak, Non-distinct, Distinct) classification, we will have 

four different classes of FTRs over the period April 2005 - March 2006. These four classes of 

FTRs are: ON (Off-peak and Non-distinct), OD (Off-peak and Distinct), PN (Peak and Non-

distinct) and PD (Peak and Distinct). All the statistical computations are implemented using 

R34. 

A quick overview of the data gives us some stylized facts of the MISO's FTR market. 

First of all, for all four types of FTRs, the average clearing prices and congestion revenues 

collected are highly volatile across all months. For example, the average clearing price of PD 

FTRs in April 2005 is highly negative (-6313.36), while the value in January 2006 is highly 

positive (960.31). This might be a sign of an immature and unstable new market. The second 

observation is that for most of the FTRs awarded, there was only one buyer for each FTR. In 

other words, the difference between distinct and non-distinct FTRs is not large, which may 

imply that the MISO monthly FTR auction market is quite thin. See Table 4 for reported 

number of non-distinct and distinct FTRs and their difference for the sample period. 

The result from Table 4 indicates that the liquidity of the monthly MISO FTR market 

increases during the one-year period. In April 2005, the market was so illiquid that there 

were only 3 more non-distinct FTRs than distinct FTRs. The overall tendency in the 

difference was increasing as time went on, although the difference in June, September 2005 

and March 2006 decreased from the previous month. These fluctuations may be explained by 

seasonality factors, but we need more information to provide a definite answer. 

 

 

 

 

 

 

                                                 
34 R is an open-source software environment for statistical computing and graphics. More information about R can be found 
at http://www.r-project.org. 
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Table 4: Reported number of non-distinct and distinct FTRs (April 2005-March 2006) 

 

 

4.5 Empirical Methodologies 

4.5.1 Overview 

In this study, the goal is to empirically test the FTR market performance under the 

risk-neutrality assumption. As shown earlier, a risk-neutral agent is willing to pay FTR up to 

his expected congestion revenue accumulated from the source to the sink specified by the 

FTR. Hence, under risk-neutrality, if the market is efficient, the unit cost of purchasing the 

FTR should be an unbiased estimator of the expected unit congestion revenue in the absence 

of interest. The problem is that the agents' expectations are not known and all the data we are 

able to collect are ex post realized value, not ex ante. To proceed, we make the following 

assumptions: (1) For every node, the LMP in each peak hour is independently and identically 

distributed (IID). So is the LMP in each off-peak hour. (2) Each market participant has 

perfect foresight. That is, he knows exactly the distributions of the peak and off-peak hour 

LMPs. Under these assumptions, we can use the realized congestion revenue as a proxy to 

the expected congestion revenue. Furthermore, since only those who are willing to pay more 

than the market clearing price can be cleared (i.e., being awarded some amount of FTR at 

some price), we can use this clearing price to approximate the agent's willingness to pay. 
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Now we are interested in testing if the clearing price of an FTR ($/MWh) effective 

during month t is equal to the expectation of the unit congestion revenue for that FTR. The 

null hypothesis we want to test is 
nm

t
nm

t RFH ,,
0 : =                                                            (7) 

We test this hypothesis via the following regression specification: 

t
nm

t
nm

t FR εββ ++= ,
10

,                                                      (8) 

In an efficient market with all risk-neutral agents, 0β  and 1β  should be close to 0 and 1, 

respectively. 

In the following subsection, we first discuss briefly the linear regression model to 

estimate Equation (8); then move on to introduce the nonparametric kernel regression model 

to estimate Equation (9). Finally, we carry out a goodness-of-fit test to see if the simple linear 

relationship between expected congestion revenue of FTR and its clearing price could be 

refuted. 

4.5.2 Linear Regression Model 

For simple notation, let x denote the monthly FTR auction clearing price ( nm
tF , ) and y 

denote its associated congestion revenue ( nm
tR , ). Under the usual Gauss-Markov assumptions, 

we can specify the simple linear model as: 

iii xy εββ ++= 10                                                     (10) 

 Under ordinary least squares (OLS) estimation, the estimated coefficients 
^
β  are: 

( ) yTT xxx 1−
=β                                                       (11) 

where ( )T10  βββ =  and ( )x 1x = . Then the fitted linear function is 

( ) ( ) yxmy TT xxxxx 1^^^
^ −

=== ββ                                     (12) 

4.5.3 Kernel Regression Model 

Under the weaker assumption of IID observations ( ) ( ) 2
11 ,..., Ryxyx nn ∈ , the general 

nonparametric regression model can be written as: 
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( ) ii xmy ε+=                                                          (13) 

where ( ) ( )xXYExm == |  is the conditional mean function (regression function). This 

conditional mean function ( )⋅m  tells us how y and x are related "on average", which can be 

estimated using modern nonparametric technique such as kernel regression method. The most 

commonly used kernel smoothing estimator for estimating ( )⋅m  is called the Nadaraya-

Watson (NW) estimator, which is given by 

( )
( )

( )h
xx

n

i

ih
xx

n

i
h

i

i

K

yK
xm

−

=

−

=

∑

∑
=

1

1
^

                                                  (14) 

where ( )⋅K  is the kernel function, which is usually a probability density function, and h is the 

smoothing parameter or bandwidth, which controls the amount of smoothness in the fitted 

density estimate35. The nice structural form of the NW estimator can be derived from the 

definition of the conditional expectation. See Sun (2006) for a detailed treatment. 

4.5.4 Goodness-of-fit Test 

To formally test whether the linear model is adequate enough to explain the 

relationship between expected congestion revenue of FTRs and its clearing price, we use the 

kernel-based nonparametric goodness-of-fit test. The null hypothesis is that the true 

underlying relationship between variable x and y can be represented by function m which is 

characterized by parameter β, that is, 

βmmH =:0   v.s.  βmmH ≠:1  

where ( )xmβ  is some β-parameterized function of x. Let ( )xmh

^
 denote the NW estimator of 

m(x), and let 

                                                 
35 Technically, a kernel function ( )⋅K  should satisfy the following four conditions: (i) ( )∫ = 1duuK  (pdf), (ii) 

( )∫ = 0duuuK  (symmetry), (iii) ( )∫ >= 022
K

duuKu σ  (finite variance), and (iv) ( ) 0≥uK  for all u in the domain of K 

(non-negativity). 
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( )
( ) ( )

( )h
xx

n

i

ih
xx

n

i

i

i

K

xmK
xm

−

=

−

=

∑

∑
=

1

1
~ ^

^ β
β  

denote an NW smoothing of ( )xm ^
β

. Note that ( )xm ^
β

 is just the parametric estimate of the 

function ( )xmβ . Hardle and Mammen (1993) propose the following test statistic:  

( ) ( ) ( )∫
∞

∞−

−= dxxwxmxmnhT hn
2

~^
}{ ^2

1

β                                     (15) 

For simplicity, let ( ) ( )xfxw =  and 1=d  in this study, and then we can approximate nT  by: 

( ) ( ) 2
~

1

^
}{ ^2

1 xmxmnhT
n

i
hn β∑

=

−≈                                             (16) 

In addition to calculate the test statistic, we need to find its critical value to carry out 

the test. Since the distribution of this test statistic does not fall into any easily-identifiable 

parametric distributions, there are basically two approaches to obtain its critical value -- 

either through asymptotic normality approximation or through bootstrap simulation. Since in 

this case the asymptotic approximation yields a rather inefficient speed of convergence (at 

the rate of 10
1−n , see Hardle and Mammen (1993) for details procedures in this approach), we 

opt to use the bootstrap approach to obtain the critical value. Furthermore, since naive 

bootstrap (i.e., resampling of ( ){ }n
iii yx 1

** , =  from ( ){ }n
iii yx 1, =  fails in regression context, we may 

use the wild bootstrap originally introduced by Wu (1986). 

Denote 
^
*
αt  as the critical value, then the bootstrap assisted GOF test for βmmH =:0  

is rejected if 
^
*
αtTn = . Detailed procedures about this approach can be found in Sun (2006). 

4.6 Results 

In this section, we discuss the results of the MISO monthly FTR auctions using the 

data from April 2005 through March 2006. Recall that we classify the FTR data into four 

categories, namely ON, OD, PN and PD. The following results are reported for all these four 

FTR types. First, we present some summary statistics, and calculate the degree to which risk-
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neutral market participants predicted congestion patterns correctly. Second, we use the linear 

model to estimate the effectiveness of FTRs as hedges for transmission congestion. Third, we 

apply non-parametric kernel model to investigate the performance of the FTR market with 

risk-averse agents. Finally, we evaluate the assumption of risk-neutrality using goodness-of-

fit test, and the assumption of risk-aversion using the kernel smoothing method. 

4.6.1 Summary Statistics 

  For each FTR purchase in each monthly auction between April 2005 and March 2006, 

we determine the unit cost of purchasing that FTR and unit revenue from holding it. Based 

on the data, we calculate a set of summary statistics for all the four types of FTRs over the 

entire sample months, and report them in Table 6-936. 

The upper half of Table 6-9 reports the total number of observations and the average 

price and congestion revenues as well as their standard deviations. From the summary result, 

it appears that both the FTR price and congestion revenue are highly volatile, which suggests 

that MISO FTR market is still in its immature stage. It is worth noting that the FTR price can 

be negative. This can be explained as follows. Let node A and node B be the source and sink 

nodes, on which an FTR is defined. Then the agents anticipating congestion from node A to 

node B (hence with positive congestion revenue) would be willing to pay a positive amount 

for this FTR, while those that expect congestion in the opposite direction (hence with 

negative congestion revenue) would be willing to pay a negative amount for this FTR, i.e., 

expecting to get paid for purchasing this FTR. 

As we examine the bottom half of Table 6-9, this relationship between the FTR price 

and congestion revenue is also confirmed by the data. For example, the positive Pearson 

correlation coefficient for each month indicates that F and R move together to some degree. 

Specifically, the average correlation is medium high at 0.54 during the sample period. We 

also calculate and report the number of correct prediction, which is defined as the data point 

where the FTR price F and the congestion revenue R have the same sign. The result shows 

that most market participants predict the congestion directions correctly, as the proportion of 

                                                 
36 We do notice that the summary results for the first month (April 2005) are considerably different from those in the later 
months. 
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the correct predictions in the total number of awarded FTRs is always greater than 50% and 

for some months it is nearly 80%. Furthermore, we examine the number and the percentage 

of the awarded FTRs for which the price paid is lower than the congestion revenue collected. 

We call these FTRs "winners" in the sense that market participants can make positive profit 

from purchasing these FTRs. For all four types of FTRs, the percentage of "winners" is 

relatively high (the mean value for all these winner percentage is 59%). 

4.6.2 Linear Regression Estimation 

We fit the linear regression in (8) for all four types of FTR data for each month. The 

results are summarized in Table 10-13 and also depicted in Figure 10-13. The description of 

the figures is as follows: the brown dotted lines are the zero-zero lines; the red dashed line is 

the 45 degree line; the green line is the linear regression fit; and the blue line is the 

nonparametric kernel fit. 

As in the figures, the results show that every quadrant has some points, although 

some have more points than others. For each month, there are some "wild" points far from 

the origin, and the observations are widely spread. In spite of that, most of the points lie close 

to the zero-price or zero-revenue axis, meaning that the prices and congestion revenues of 

most FTRs are not extremely positive or extremely negative. This is consistent with our 

common sense that most of the time the congestion levels are moderate. 

There is clear evidence that the slope of the regression line is different from one, but 

is always positive, which confirms the positive correlation between the revenue and price37. 

For some months, the slope is greater than one, while for other months, it is lower than one. 

This means that sometimes market participants systematically lose money and sometimes 

systematically earn money when they try to hedge congestion risk exposures. For most of the 

months, the intercept is far away from zero. 

These graphic observations can also be confirmed by the estimated results reported in 

Table 10-13. Clearly the estimated regression coefficients 0β  and 1β  are very different from 

0 and 1, and most of their associated p-values are far less than 0.01. Therefore we can reject 

                                                 
37 There are some cases where the slope is very close to one such as ON FTRs in Oct-05 and Mar-06. 
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the null hypothesis that the MISO FTR market is efficient under the assumption of risk-

neutrality of the market participants. 

Although the results from the linear regression model suggest that the MISO FTR 

market is not efficient under the assumption of risk-neutrality, it can still be true that the 

market is efficient if the market participants are not risk-neutral. We have shown earlier 

through simulation that for risk-averse agents, the efficient relationship between the FTR 

prices and congestion revenues would not be a 45 degree line but rather a concave function. 

In that case, our regression results might well be the signs of the agents being risk averse. To 

take other possible risk preference into account, we apply a nonparametric method, kernel 

regression, to estimate the relationship between FTR price and the congestion revenue. 

4.6.3 Kernel Regression and GOF Test 

As briefly introduced in Section 4.5.3, we applied NW kernel regression to all four 

types of FTR data over 12 months. The fitted kernel line (in blue) appears to be highly non-

linear as they shown in Figure 10-13. Although, due to the noise data, the kernel fit does not 

suggest any plausible non-linear relationship between the FTR price and the congestion 

revenue, we still can use it to construct a goodness-of-fit (GOF) test against the linear model. 

As detailed in Appendix, we choose the bootstrap sample size to be 1000. The GOF test 

result is reported in Table 14. The result shows that all the tests are rejected at significance 

level 0.004 or better, which implies that the underlying relationship between F and R is 

significantly different from the linear fit. 

The linear regression results in the preceding subsection indicate that under the 

assumption of risk-neutrality, the MISO FTR market does not perform efficiently, or 

alternatively the assumption itself is doubtable. The goodness of fit test conducted confirms 

us further that the linear fit is not proper for the data observed. Naturally, we are motivated to 

ask if the market might be efficient in the case of other risk preferences, such as risk-aversion. 

As shown earlier, the only thing we know about the relationship between agent's willingness 

to pay (F) and the expected congestion revenue from holding the FTR (ER) under risk-

aversion assumption is that F>ER. From the estimated kernel regression functions, we 

observe that many fitted kernel curves are above the 45 degree line, which means that the 
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risk "premium" is negative. Therefore, using the kernel fits as exploratory methods for 

examining the validity of the risk-aversion assumption, we may conclude that the market 

participants are not all risk-averse. Equivalently, the MISO FTR market is not efficient 

assuming that risk-aversion. 

4.7 Conclusions 

Some empirical work has been conducted with the existing FTR markets, such as the 

NYISO TCC market, but none has been done to empirically investigate the newly born 

MISO FTR market. In this paper, we examine the performance of this market, using publicly 

available data on the prices paid and congestion revenues collected by the market participants 

in the monthly auctions between April 2005 and March 2006. Our study provides some 

empirical evidence of how this young market has been performing so far. We find that the 

new market has something in common with the mature ones and also possess some unique 

features. The following lists the features that the MISO FTR market and NYISO TCC market 

share: 

1.  The correlation between FTR clearing prices and congestion revenues is positive 

for each month. 

2.   For each month, most of the FTR holders make correct predictions about the 

direction of congestions, that is, the price and revenue have the same sign. 

3.   A considerable portion of FTR holders make money by purchasing the FTRs, that 

is, the clearing price is lower than the revenue collected. 

At the same time, the MISO FTR market has some stylized facts that are not seen in 

the more mature markets: 

1. The number of distinct and non-distinct awards is different for different months, 

but increases over the 12 months on the whole. 

2. The FTR market is quite thin, in the sense that there is only one buyer for most 

FTRs; But the difference between the number of non-distinct FTR awards and the 

number of distinct ones increases, meaning that this market gets thicker over time. 

3. The average FTR auction clearing prices and revenues are very volatile across all 

months. 
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4. The correlation between FTR clearing prices and congestion revenues has a 

slightly increasing trend over the 12 months. 

5. The results for the first month (April 2005) are very different from later months. 

Compared with the first three common features, these five characteristics are 

indicative of this new market, but they could also imply that this market is getting more 

mature as time goes on. If we had a longer sample period, we might be able to see more 

clearly the progressing of this market and differentiate between the trend and seasonality. 

This is a task to be accomplished in the future. 

As to the performance of the MISO FTR market, we find that the market works well 

in terms of some measures such as the proportion of correct predictions. The results from the 

simple linear regression seem to tell us that this market is not efficient under the assumption 

of risk-neutral market participants. These results, however, might indicate that the risk-

neutrality assumption is not valid in the first place. Therefore, we also consider risk-averse 

preferences and applied nonparametric kernel fit to the data. The kernel fit results suggest 

that the MISO FTR market is not efficient under risk-averse assumption either. Moreover we 

carried out a goodness-of-fit test against the linear fit. The test results indicate that comparing 

with the kernel fit, the linear fit is not adequate enough to capture the underlying structure of 

this market. 

Due to lack of more detailed data, such as the bids and offers submitted by the market 

participants, we cannot conclude what causes the potential inefficiency of the market. This 

can be accomplished in the future when more data become available. 

The contributions of this paper are in two-folds. First, this paper explores the newly 

formed MISO FTR market using empirical methods. With the available data, we summarize 

the stylized facts about MISO FTR market and perform market efficiency tests. Second, in 

this paper we conduct theoretic analysis of the hedging role of FTRs and provide reference 

for further empirical analysis once we have access to more data. For example, we point out 

the need to know if a transaction is bilateral or via a pool when examining the risk coverage 

provided by FTRs. Since the data sources we now have do not provide such information, we 

do not differentiate between the two types in our study. We also mention that one should 

consider the FTR purchase in the context of the power transactions in the wholesale 
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electricity market, but we are not able to do this in the current study due to data availability. 

To fully understand the underlying data generating process for the MISO FTR market, both 

FTRs and power transactions need to be considered. 

There can be several extensions to our work. One is to compare the MISO FTR 

market with the more mature markets such as New England and New York FTR markets to 

see exactly what the difference is and why. With data of a longer sample period, we can carry 

out time series analysis and further investigate the development of the young market and see 

if it will become one similar to those long existing ones. Another extension might be to 

analyze FTR auctions together with the electricity transactions and individual behaviors, so 

as to get an integrated view of how FTRs are used to reduce the risk associated with the 

agent's profit. This is quite challenging and requires data not only from the FTR and energy 

market, but also from individual market participants. 
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4.9 Appendices 

Table 5: MISO monthly FTR allocation and auction timeline: August 2005a 
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Table 6: Summary statistics for off-peak and non-distinct (ON) FTRs (Apr05-Mar06) 
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Table 7: Summary statistics for off-peak and distinct (OD) FTRs (Apr05-Mar06) 
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Table 8: Summary statistics for peak and non-distinct (PN) FTRs (Apr05-Mar06) 
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Table 9: Summary statistics for peak and distinct (PD) FTRs (Apr05-Mar06) 
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Table 10: Linear regression results for off-peak and non-distinct (ON) FTRs (Apr05-Mar06) 

 
 

Table 11: Linear regression results for off-peak and distinct (OD) FTRs (Apr05-Mar06) 
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Table 12: Linear regression results for peak and non-distinct (PN) FTRs (Apr05-Mar06) 

 
 

 

 

 

 

Table 13: Linear regression results for peak and distinct (PD) FTRs (Apr05-Mar06) 
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Table 14: The goodness-of-fit test results for all the four types of FTRs (Apr05-Mar06) 
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Figure 10: Linear and kernel regressions for off-peak and non-distinct (ON) FTRs 
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Figure 11: Linear and kernel regressions for off-peak and distinct (OD) FTRs 
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Figure 12: Linear and kernel regressions for peak and non-distinct (PN) FTRs 
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Figure 13: Linear and kernel regressions for peak and distinct (PD) FTRs 
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CHAPTER 5.  CONCLUDING REMARKS 
This dissertation covers our research findings on some issues related to the power 

industry including transmission investment and FTRs. Specifically, Chapters 2 and 3 

investigate the efficiency attribute of transmission investment and the associated cost 

allocation problems, respectively. The performance of FTRs is addressed in Chapter 4.   

In Chapter 2 we clarify the nature of the externality created by loop flows that can 

cause market-based transmission investment to be inefficient. The main conclusion is that 

transmission investment introduces an externality when it affects the flow of power along the 

lines for any given set of injections. It changes a physical aspect of power transmission, i.e. 

the way that electricity is transmitted in the network. As a result, the decentralized outcome 

may diverge from the efficient one. Specifically, the transmission investment purely induced 

by markets will not be optimal from society’s point of view.  

We say that this externality is created by loop flows, because there is no externality 

with transmission investment in a radial network. However, it does not mean that externality 

must exist whenever there are loop flows. Transmission investment that leaves the 

distribution factors unaffected will not cause market failure even in the presence of loop 

flows.  

Our findings in Chapter 2 may promote understanding of transmission investment 

market design. The externality we investigate needs to be considered in defining property 

rights and developing regulation schemes in order to induce optimal investment level in 

transmission expansion. Mitigating market power itself is far from enough. Even if we could 

create perfectly competitive market environments, the outcome might still be in efficient. In 

Chapter 2, we suggest one way to deal with the externality, the optimal Pigouvian tax. An 

alternative is to establish well-defined and enforceable property rights with regard to the 

externality-generating activity. Then the agents themselves would reach an optimal 

agreement on the level of the externality through bargaining. Both options require much 

information, although the latter requires less than the former. In reality, it might be extremely 

hard to get hands on all the information needed. So an immediate extension to our work is to 

come up with a realistic and feasible mechanism that can remedy the externality associated 

with loop flows.  
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Since having markets make optimal transmission investment decisions is an illusion, 

proper regulation policies should be imposed on transmission planning. One of the related 

issues is who should pay for transmission investment or how the costs should be allocated, 

especially in the case that the investment will benefit society as a whole but hurt some agents 

at the same time. Intuitively, those who will gain from the investment should fund the project, 

but that is not all. To ensure that the project will be launched, the potential sufferers need to 

be compensated for their losses. In addition, we need to figure out the concrete amounts of 

payments, or the specific allocation of the transmission investment costs.  

In Chapter 3, we address the problem above, using cooperative game theory. The 

main idea is that each transmission investment cost allocation problem is associated with a 

cooperative game. Then we can apply the solution concepts of cooperative games to the 

formulated game and obtain the allocation rule for the original problem. Three allocation 

rules are defined in Chapter 3, based on the Shapley value, core and nucleolus, respectively. 

Each of them provides a reasonable allocation of transmission investment cost and a 

benchmark of what the proper allocations of an electricity problem should be in theory. The 

allocation methods that are being practiced can be compared with the ideal allocations to see 

how far away they are from each other and how the mechanism in practice can be improved. 

The allocation rules we define can be used to find allocations, as long as we are able to 

compute the gain or loss to each agent brought about by the transmission investment project. 

This is not an easy task, though. Most of the time we can only estimate the expected benefits 

or losses from the investment, because the future use of transmission, load levels and patterns 

are highly uncertain. In that case, the cost allocation will be conducted based on those 

expected figures, instead of the deterministic ones as in the example in Chapter 3.  

In Chapter 4, we conduct both theoretic and empirical studies of FTRs, a topic highly 

related to transmission investment. One of the major goals of this chapter is to make 

improvement over previous empirical work on FTR markets. A common drawback in the 

handful few papers in this area is the weak theoretic framework. Firstly, the authors simplify 

their analysis without even mentioning the underlying assumptions, but their methodologies 

are not proper if those assumptions do not hold. The empirical results are interpreted as if 

those assumptions were valid, which makes their conclusions less convincing. Secondly, the 
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methodology in some of the papers is based on some unproved conjectures. For example, one 

of the papers asserts that for risk-averse agents, the congestion revenue from an FTR is a 

concave function of the price paid for it. Whether this is true has never been shown. Thirdly, 

the general risk hedging theory is directly borrowed for the FTR analysis without considering 

the specific features of the power market. For example, electricity transactions can be made 

via a power pool or according to a bilateral contract, and the hedging of FTR has different 

manifestations in these two types of transactions. None of the existing papers takes this into 

account. In comparison, our paper, in the first place, constructs a more complete and tenable 

theoretic framework than those in the literature. The unproved conjecture is also 

demonstrated in the paper. Besides, we emphasize the importance of understanding the data 

generation process in addition to working with the observations and suggest what other data 

need to be used for a more complete analysis. 

We come up with stylized facts about this young market: the number of FTR awards 

is increasing overtime, the market is rather thin, but has sign of getting thicker, and the FTR 

clearing prices and revenues are highly volatile etc. These features are not observed in the 

more mature market like the NYISO FTR market, and have not been addressed before. We 

also find that the MISO FTR market is not efficient under both risk-neutral in terms of the 

relationship between the payment and revenue.  

This dissertation addresses some open questions that the U.S. power industry faces 

and elucidates our ideas about them. This does not end the debate on the issues and further 

investigations may be well needed. Besides, many other issues should also be explored in the 

future. We hope to proceed with efforts in the research of the power industry and make our 

contributions to its development. 
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